Intro: Non-equilibrium Green function theory

Nick Papior

SIESTA School

15 November 2024

←□→ ←□→ ←□→ ←□→ □
←□→ ←□→ ←□→ ←□→ ←□→

Outline

- Motivation
 - Transport properties of atomistic systems
- 2 Self-energy
 - The concept
 - Bulk self-energy requirements
- Green function theory
 - Introduction
 - Rules of integration
 - Advancing to Non-Equilibrium Green Function
- 4 Self-energy
 - The concept
 - Bulk self-energy requirements
- Non-equilibrium Green function
 - Variables
 - Density of states
- 6 Creating a benzene dithiol (BDT) geometry
 - Reiterate self-energy requirements
 - Electrodes
 - Molecule
 - Intermediate
 - Intermediate electrode layers
 - Finalising simulation
- 7 Tutorial

Motivation

- Motivation
 - Transport properties of atomistic systems
- Self-energy
 - The concept
 - Bulk self-energy requirements
- Green function theory
 - Introduction
 - Rules of integration
 - Advancing to Non-Equilibrium Green Function
- 4 Self-energy
 - The concept
 - Bulk self-energy requirements
- Non-equilibrium Green function
 - Variables
 - Density of states
- 6 Creating a benzene dithiol (BDT) geometry
 - Reiterate self-energy requirements
 - Electrodes
 - Molecule
 - Intermediate
 - Intermediate electrode layers
 - Finalising simulation
- 7 Tutorial

Calculating transport properties of atomistic systems

Steady-state transport properties?

Calculating transport properties of atomistic systems

Williams *et.al.*: 10.1126/science.1144657 Prins *et.al.*: 10.1021/nl202065x

Calculating transport properties of atomistic systems

Steady-state transport properties?

Simulation tool requirements

- Systems under non-equilibrium (applied bias)
- Large system calculations (incorporate full device)
- Multi-electrode devices

Non-Equilibrium Green function (NEGF)

 $Williams \ \textit{et.al.}{:}\ 10.1126/science.1144657, Prins \ \textit{et.al.}{:}\ 10.1021/nl202065x$

WebOfScience (NEGF)

- Motivation
 - Transport properties of atomistic systems
- 2 Self-energy
 - The concept
 - Bulk self-energy requirements
- Green function theory
 - Introduction
 - Rules of integration
 - Advancing to Non-Equilibrium Green Function
- 4 Self-energy
 - The concept
 - Bulk self-energy requirements
- Non-equilibrium Green function
 - Variables
 - Density of states
- 6 Creating a benzene dithiol (BDT) geometry
 - Reiterate self-energy requirements
 - Electrodes
 - Molecule
 - Intermediate
 - Intermediate electrode layers
 - Finalising simulation
- 7 Tutorial

The concept

Self-energies – perturb the Hamiltonian

• A self-energy renormalises the Hamiltonian

$$\boldsymbol{H}' = \boldsymbol{H} + \boldsymbol{\Sigma}$$

The concept

Self-energies – perturb the Hamiltonian

• A self-energy renormalises the Hamiltonian

$$\boldsymbol{H'} = \boldsymbol{H} + \boldsymbol{\Sigma}$$

- May describe wide variety of physical properties
 - Semi-infinity
 - Local defects
 - Absorbing potentials

• ...

The concept

Self-energies – perturb the Hamiltonian

• A self-energy renormalises the Hamiltonian

$$\boldsymbol{H}' = \boldsymbol{H} + \boldsymbol{\Sigma}$$

- May describe wide variety of physical properties
 - Semi-infinity
 - Local defects
 - Absorbing potentials
 - ...
- TranSiesta, self-energies are only semi-infinite leads

The concept

Self-energies – perturb the Hamiltonian

• A self-energy renormalises the Hamiltonian

$$\mathbf{H}' = \mathbf{H} + \mathbf{\Sigma}$$

- May describe wide variety of physical properties
 - Semi-infinity
 - Local defects
 - Absorbing potentials
 - ...
- TranSiesta, self-energies are only semi-infinite leads
- ! TBtrans allows custom (additional) self-energies, even when calculating transport from DFT Hamiltonians

Semi-infinity

- Describes interaction of a system to a semi-infinite region
- Self-energy calculations *require* no more than nearest neighbour interactions between unit-cells

$$\Sigma_{\{1,1\}}(E) = \mathbf{V}^{\dagger} \left[E + i \eta - \mathbf{H} \right]^{-1} \mathbf{V}$$

$$\vdots$$

$$\Sigma_{\{i,1\}}(E) = \mathbf{V}^{\dagger} \left[E + i \eta - \mathbf{H} - \Sigma_{\{i-1,1\}}(E) \right]^{-1} \mathbf{V}$$

Continue until $\Sigma_{\{i,1\}} pprox \Sigma_{\{i+1,1\}}$

Semi-infinity – which unit-cells?

This is *only* a requirement along the semi-infinite direction!

Semi-infinity – which unit-cells?

This is *only* a requirement along the semi-infinite direction!

Semi-infinity – rules

Rules for using self-energies

Coupling a bulk electrode to a device requires(!) coupling region to behave bulk as well.

Semi-infinity – rules

Rules for using self-energies

Coupling a bulk electrode to a device requires(!) coupling region to behave bulk as well.

Semi-infinity – rules

Rules for using self-energies

Coupling a bulk electrode to a device requires(!) coupling region to behave bulk as well.

• Remember that $\Sigma_{-/+}$ is a correction to the Hamiltonian (i.e. $H' = H + \Sigma$)

→□→→□→→□→□→□ □ • • ○ ○

Semi-infinity – rules

Rules for using self-energies

Coupling a bulk electrode to a device requires(!) coupling region to behave bulk as well.

- Remember that $\Sigma_{-/+}$ is a correction to the Hamiltonian (i.e. $H' = H + \Sigma$)
- Σ_{-} into 1st H_0 ?

• Σ_{-} into 2nd H_0 ?

• Σ_{-} into 3rd H_0 ?

• Σ_{-} into H_1 ?

Semi-infinity – rules

Rules for using self-energies

Coupling a bulk electrode to a device requires(!) coupling region to behave bulk as well.

- Remember that $\Sigma_{-/+}$ is a correction to the Hamiltonian (i.e. $\mathbf{H}' = \mathbf{H} + \Sigma$)
- Σ_{-} into 1st H_0 ?

• Σ_{-} into 2nd H_0 ?

• Σ_{-} into 3rd H_0 ?

• Σ_{-} into H_1 ?

Green function theory

- 1 Motivation
 - Transport properties of atomistic systems
- 2 Self-energy
 - The concept
 - Bulk self-energy requirements
- Green function theory
 - Introduction
 - Rules of integration
 - Advancing to Non-Equilibrium Green Function
- 4 Self-energy
 - The concept
 - Bulk self-energy requirements
- Non-equilibrium Green function
 - Variables
 - Density of states
- 6 Creating a benzene dithiol (BDT) geometry
 - Reiterate self-energy requirements
 - Electrodes
 - Molecule
 - Intermediate
 - Intermediate electrode layers
 - Finalising simulation
- 7 Tutorial

Introduction

• The single particle Green function may be written as:

$$[(E+\mathrm{i}\eta)I-H_k]G_k(E)=I$$

Introduction

• The single particle Green function may be written as:

$$[(E+i\eta)I-H_k]G_k(E)=I$$

• This may be rewritten in terms of the eigenstates

$$\mathbf{G}_{\mathbf{k}}(E) = \sum_{i} \frac{|\psi_{i,\mathbf{k}}\rangle\langle\psi_{i,\mathbf{k}}|}{E + \mathrm{i}\eta - \epsilon_{i,\mathbf{k}}}$$

Introduction

• The single particle Green function may be written as:

$$[(E+i\eta)I-H_k]G_k(E)=I$$

• This may be rewritten in terms of the eigenstates

$$\mathbf{G}_{\mathbf{k}}(E) = \sum_{i} \frac{|\psi_{i,\mathbf{k}}\rangle\langle\psi_{i,\mathbf{k}}|}{E + i\eta - \epsilon_{i,\mathbf{k}}}$$

• Taking the imaginary part of the Green function yields

$$\operatorname{Im} \mathbf{G}_{\mathbf{k}}(E) = -\sum_{i} |\psi_{i,\mathbf{k}}|^{2} \mathfrak{L}_{i,\mathbf{k}}(E)$$

$$\mathfrak{L}_{i,\mathbf{k}}(E) = \frac{\eta}{(E - \epsilon_{i,\mathbf{k}})^2 + \eta^2}$$

→□→→□→→□→□→□ □ • • ○ ○

Introduction

• The single particle Green function may be written as:

$$[(E + i\eta)I - H_k]G_k(E) = I$$

• This may be rewritten in terms of the eigenstates

$$\mathbf{G}_{\mathbf{k}}(E) = \sum_{i} \frac{|\psi_{i,\mathbf{k}}\rangle\langle\psi_{i,\mathbf{k}}|}{E + i\eta - \epsilon_{i,\mathbf{k}}}$$

• Taking the imaginary part of the Green function yields

$$\operatorname{Im} \mathbf{G}_{\mathbf{k}}(E) = -\sum_{i} |\psi_{i,\mathbf{k}}|^{2} \mathfrak{L}_{i,\mathbf{k}}(E)$$

$$\mathfrak{L}_{i,\mathbf{k}}(E) = \frac{\eta}{(E - \epsilon_{i,\mathbf{k}})^2 + \eta^2}$$

<ロト <部ト < 注 > < 注 > 、 注

Rules of integration – Energy

Numeric integration of Green function

$$\frac{-1}{\pi} \iint_{E'}^{E''} dE d\mathbf{k} \operatorname{Im} \mathbf{G}_{\mathbf{k}}(E) \approx \frac{-1}{\pi} \sum_{\mathbf{k}} \delta \mathbf{k} \sum_{j}^{(E''-E')/\delta E} \delta E \operatorname{Im} \mathbf{G}_{\mathbf{k}}(E' + j\delta E)$$

Rules of integration – Energy

Numeric integration of Green function

$$\frac{-1}{\pi} \iint_{E'}^{E''} dE d\mathbf{k} \operatorname{Im} \mathbf{G}_{\mathbf{k}}(E) \approx \frac{-1}{\pi} \sum_{\mathbf{k}} \delta \mathbf{k} \sum_{j}^{(E'' - E')/\delta E} \delta E \operatorname{Im} \mathbf{G}_{\mathbf{k}}(E' + j\delta E)$$

Are there any problems here?

- What if $\delta E \ll \eta$?
- What if $\delta E \gg \eta$?
- What if $\delta E \approx \eta$?

Rules of integration – Energy

Numeric integration of Green function

$$\frac{-1}{\pi} \iint_{E'}^{E''} dE d\mathbf{k} \operatorname{Im} \mathbf{G}_{\mathbf{k}}(E) \approx \frac{-1}{\pi} \sum_{\mathbf{k}} \delta \mathbf{k} \sum_{j}^{(E'' - E')/\delta E} \delta E \operatorname{Im} \mathbf{G}_{\mathbf{k}}(E' + j\delta E)$$

Are there any problems here?

- What if $\delta E \ll \eta$? Good! The energy spacing is much smaller than FWHM.
- What if $\delta E \gg \eta$?

 Bad! The energy spacing is much larger than FWHM. Dependent on the initial E' you will find different DOS as some eigenstates may be passed.
- What if $\delta E \approx \eta$?

 Ok! The energy spacing is half-width at half-maximum. This will typically yield a fine integration.

Rules of integration – Energy

Numeric integration of Green function

$$\frac{-1}{\pi} \iint_{E'}^{E''} dE d\mathbf{k} \operatorname{Im} \mathbf{G}_{\mathbf{k}}(E) \approx \frac{-1}{\pi} \sum_{\mathbf{k}} \delta \mathbf{k} \sum_{j}^{(E'' - E')/\delta E} \delta E \operatorname{Im} \mathbf{G}_{\mathbf{k}}(E' + j\delta E)$$

Are there any problems here?

- What if $\delta E \ll \eta$? Good! The energy spacing is much smaller than FWHM.
- What if $\delta E \gg \eta$?

 Bad! The energy spacing is much larger than FWHM. Dependent on the initial E' you will find different DOS as some eigenstates may be passed.
- What if $\delta E \approx \eta$?

 Ok! The energy spacing is half-width at half-maximum. This will typically yield a fine integration.

4 D ト 4 団 ト 4 豆 ト 4 豆 ・ 夕 Q C・

Rules of integration – Brillouin Zone

Numeric integration of Green function

$$\frac{-1}{\pi} \iint_{E'}^{E''} \mathrm{d}E \mathrm{d}\mathbf{k} \operatorname{Im}\mathbf{G}_{\mathbf{k}}(E) \approx \frac{-1}{\pi} \sum_{\mathbf{k}} \delta \mathbf{k} \sum_{j}^{(E'' - E')/\delta E} \delta E \operatorname{Im}\mathbf{G}_{\mathbf{k}}(E' + j\delta E)$$

- The Brillouin zone integration is just as important as the energy integration.
- Prior understanding of the electronic structure of the system is *important*!

Rules of integration – Brillouin Zone

Numeric integration of Green function

$$\frac{-1}{\pi} \iint_{E'}^{E''} dE d\mathbf{k} \operatorname{Im} \mathbf{G}_{\mathbf{k}}(E) \approx \frac{-1}{\pi} \sum_{\mathbf{k}} \delta \mathbf{k} \sum_{j}^{(E'' - E')/\delta E} \delta E \operatorname{Im} \mathbf{G}_{\mathbf{k}}(E' + j\delta E)$$

- The Brillouin zone integration is just as important as the energy integration.
- Prior understanding of the electronic structure of the system is important!
- Choose $\delta \mathbf{k}$ such that band-energies $E_{\mathbf{k}} E_{\mathbf{k} + \delta \mathbf{k}} \approx \eta$. Otherwise band features will not be captured.

Rules of integration – Brillouin Zone

Numeric integration of Green function

$$\frac{-1}{\pi} \iint_{E'}^{E''} dE d\mathbf{k} \operatorname{Im} \mathbf{G}_{\mathbf{k}}(E) \approx \frac{-1}{\pi} \sum_{\mathbf{k}} \delta \mathbf{k} \sum_{j}^{(E'' - E')/\delta E} \delta E \operatorname{Im} \mathbf{G}_{\mathbf{k}}(E' + j\delta E)$$

- The Brillouin zone integration is just as important as the energy integration.
- Prior understanding of the electronic structure of the system is important!
- Choose $\delta \mathbf{k}$ such that band-energies $E_{\mathbf{k}} E_{\mathbf{k} + \delta \mathbf{k}} \approx \eta$. Otherwise band features will not be captured.

Difference between diagonalisation and Green function methods

Diagonalization

1D-sampling

k-points, all energy-eigenvalues

Green functions

2D-sampling

k and *E*-points are both required to be sampled

$Advancing \rightarrow NEGF$

Single particle Green function

$$[(E + i\eta)I - H_k]G_k(E) = I$$

Non-equilibrium Green function

$$[(E+i\eta)S-H_k-\sum_{\varepsilon}\Sigma_{\varepsilon,k}(E-\mu_{\varepsilon})]G_k(E)=I$$

Additional terms:

- S is the overlap matrix which is needed for non-orthogonal basis sets.
- \bullet Σ is the *self-energy* which is describing semi-infinite directions (integrating out k in that direction)

Nick Papior; DTU Compute

$Advancing \rightarrow NEGF$

Single particle Green function

$$[(E + i\eta)I - H_k]G_k(E) = I$$

Non-equilibrium Green function

$$[(E+i\eta)S-H_k-\sum_{\varepsilon}\Sigma_{\varepsilon,k}(E-\mu_{\varepsilon})]G_k(E)=I$$

Additional terms:

- S is the overlap matrix which is needed for non-orthogonal basis sets.
- Σ is the *self-energy* which is describing semi-infinite directions (integrating out k in that direction)

Nick Papior: DTU Compute

Advancing → NEGF

Single particle Green function

$$[(E + i\eta)I - H_k]G_k(E) = I$$

Non-equilibrium Green function

$$[(E+i\eta)S-H_k-\sum_{\varepsilon}\Sigma_{\varepsilon,k}(E-\mu_{\varepsilon})]G_k(E)=I$$

Additional terms:

- S is the overlap matrix which is needed for non-orthogonal basis sets.
- \bullet Σ is the *self-energy* which is describing semi-infinite directions (integrating out k in that direction)

Nick Papior: DTU Compute

$Advancing \rightarrow NEGF$

Single particle Green function

$$[(E + i\eta)I - H_k]G_k(E) = I$$

Non-equilibrium Green function

$$[(E+i\eta)S-H_k-\sum_{\varepsilon}\Sigma_{\varepsilon,k}(E-\mu_{\varepsilon})]G_k(E)=I$$

Additional terms:

- S is the overlap matrix which is needed for non-orthogonal basis sets.
- Σ is the *self-energy* which is describing semi-infinite directions (integrating out k in that direction)

• Self-energies have "large" imaginary components smearing the DOS for states coupled to the leads. The imaginary part (η) can thus often be neglected in the device region^a.

^aNot for bound states.

Important

Understanding self-energies is like, really, really important.

Nick Papior: DTU Compute

- Motivation
 - Transport properties of atomistic systems
- Self-energy
 - The concept
 - Bulk self-energy requirements
- Green function theory
 - Introduction
 - Rules of integration
 - Advancing to Non-Equilibrium Green Function
- 4 Self-energy
 - The concept
 - Bulk self-energy requirements
- Non-equilibrium Green function
 - Variables
 - Density of states
- 6 Creating a benzene dithiol (BDT) geometry
 - Reiterate self-energy requirements
 - Electrodes
 - Molecule
 - Intermediate
 - Intermediate electrode layers
 - Finalising simulation
- 7 Tutorial

The concept

Self-energies – perturb the Hamiltonian

$$\boldsymbol{H}' = \boldsymbol{H} + \boldsymbol{\Sigma}$$

The concept

Self-energies – perturb the Hamiltonian

$$\boldsymbol{H'} = \boldsymbol{H} + \boldsymbol{\Sigma}$$

- May describe wide variety of physical properties
 - Semi-infinity
 - Local defects
 - Absorbing potentials
 - ...

The concept

Self-energies – perturb the Hamiltonian

$$\boldsymbol{H}' = \boldsymbol{H} + \boldsymbol{\Sigma}$$

- May describe wide variety of physical properties
 - Semi-infinity
 - Local defects
 - Absorbing potentials
 - ...
- TranSiesta, self-energies are only semi-infinite leads

The concept

Self-energies – perturb the Hamiltonian

$$\boldsymbol{H}' = \boldsymbol{H} + \boldsymbol{\Sigma}$$

- May describe wide variety of physical properties
 - Semi-infinity
 - Local defects
 - Absorbing potentials
 - ...
- TranSiesta, self-energies are only semi-infinite leads
- ! TBtrans allows custom (additional) self-energies, even when calculating transport from DFT Hamiltonians

Semi-infinity

- Describes interaction of a system to a semi-infinite region
- Self-energy calculations *require* no more than nearest neighbour interactions between unit-cells

$$\Sigma_{\{1,1\}}(E) = \mathbf{V}^{\dagger} \left[E + i \eta - \mathbf{H} \right]^{-1} \mathbf{V}$$

$$\vdots$$

$$\Sigma_{\{i,1\}}(E) = \mathbf{V}^{\dagger} \left[E + i \eta - \mathbf{H} - \Sigma_{\{i-1,1\}}(E) \right]^{-1} \mathbf{V}$$

Continue until $\Sigma_{\{i,1\}} pprox \Sigma_{\{i+1,1\}}$

イロトイ団トイミトイミト ミ めへの

Semi-infinity – which unit-cells?

This is *only* a requirement along the semi-infinite direction!

Semi-infinity – which unit-cells?

Semi-infinity – rules

Rules for using self-energies

Coupling a bulk electrode to a device requires(!) coupling region to behave bulk as well.

Semi-infinity – rules

Rules for using self-energies

Coupling a bulk electrode to a device requires(!) coupling region to behave bulk as well.

Semi-infinity – rules

Rules for using self-energies

Coupling a bulk electrode to a device requires(!) coupling region to behave bulk as well.

• Remember that $\Sigma_{-/+}$ is a correction to the Hamiltonian (i.e. $H' = H + \Sigma$)

Semi-infinity – rules

Rules for using self-energies

Coupling a bulk electrode to a device requires(!) coupling region to behave bulk as well.

- Remember that $\Sigma_{-/+}$ is a correction to the Hamiltonian (i.e. $\mathbf{H}' = \mathbf{H} + \Sigma$)
- Σ_{-} into 1st H_0 ?

• Σ_{-} into 2nd H_0 ?

• Σ_{-} into 3rd H_0 ?

• Σ_{-} into H_1 ?

Semi-infinity – rules

Rules for using self-energies

Coupling a bulk electrode to a device requires(!) coupling region to behave bulk as well.

- Remember that $\Sigma_{-/+}$ is a correction to the Hamiltonian (i.e. $\mathbf{H}' = \mathbf{H} + \Sigma$)
- Σ_{-} into 1st H_0 ?

• Σ_{-} into 2nd H_0 ?

• Σ_{-} into 3rd H_0 ?

• Σ_{-} into H_1 ?

- Motivation
 - Transport properties of atomistic systems
- Self-energy
 - The concept
 - Bulk self-energy requirements
- Green function theory
 - Introduction
 - Rules of integration
 - Advancing to Non-Equilibrium Green Function
- 4 Self-energy
 - The concept
 - Bulk self-energy requirements
- Non-equilibrium Green function
 - Variables
 - Density of states
- 6 Creating a benzene dithiol (BDT) geometry
 - Reiterate self-energy requirements
 - Electrodes
 - Molecule
 - Intermediate
 - Intermediate electrode layers
 - Finalising simulation
- 7 Tutorial

Variables

Important variables in Green function techniques

e	electrode index
H_k	Hamiltonian
S_k	Overlap, for orthogonal basis sets equals I
$ ho_{ m k}$	Density matrix
$\Sigma_{\mathbf{k}}(\epsilon)$	Self-energy (not necessarily an electrode!)
$\Gamma_{\mathfrak{e},\mathbf{k}}(\epsilon)$	Scattering matrix from $\mathfrak e$
$\mathbf{G_k}(\epsilon)$	Green function
$\mathcal{A}_{\mathbf{c},\mathbf{k}}(\epsilon)$	Spectral function originating from ${\mathfrak e}$
$T_{\mathfrak{e} o \mathfrak{e}'}(\epsilon)$	Transmission function from $\mathfrak e$ to $\mathfrak e'$
$T_{e}(\epsilon)$	Total transmission function out of ${\mathfrak e}$

Variables

Important variables in Green function techniques

e	electrode index
H_k	Hamiltonian
S_k	Overlap, for orthogonal basis sets equals ${f I}$
$ ho_{\mathbf{k}}$	Density matrix
$\Sigma_{\mathbf{k}}(\epsilon)$	Self-energy (not necessarily an electrode!)
$\Gamma_{\mathfrak{e},\mathbf{k}}(\epsilon)$	Scattering matrix from $\mathfrak e$
$\mathbf{G_k}(\epsilon)$	Green function
$\mathcal{A}_{\mathfrak{e},\mathbf{k}}(\epsilon)$	Spectral function originating from ${\mathfrak e}$
$\mathcal{T}_{\mathfrak{e} o \mathfrak{e}'}(\epsilon)$	Transmission function from $\mathfrak e$ to $\mathfrak e'$
$\mathcal{T}_{s}(\epsilon)$	Total transmission function out of e

Basic equations for Green function techniques

$$\begin{aligned} \mathbf{G}_{\mathbf{k}}(\varepsilon) &= \left[(\varepsilon + \mathrm{i}\eta) \mathbf{S}_{\mathbf{k}} - \mathbf{H}_{\mathbf{k}} - \sum_{\varepsilon} \Sigma_{\varepsilon, \mathbf{k}} (\varepsilon - \mu_{\varepsilon}) \right]^{-1} \\ \mathbf{\Gamma}_{\varepsilon, \mathbf{k}}(\varepsilon) &= i \Big(\Sigma_{\varepsilon, \mathbf{k}} (\varepsilon - \mu_{\varepsilon}) - \Sigma_{\varepsilon, \mathbf{k}}^{\dagger} (\varepsilon - \mu_{\varepsilon}) \Big) \\ \mathcal{A}_{\varepsilon, \mathbf{k}}(\varepsilon) &= \mathbf{G}_{\mathbf{k}}(\varepsilon) \mathbf{\Gamma}_{\varepsilon, \mathbf{k}}(\varepsilon) \mathbf{G}_{\mathbf{k}}^{\dagger}(\varepsilon) \end{aligned}$$

Density of states

Density of states over all orbitals

$$\begin{aligned} &\mathrm{DOS}(\epsilon) = \mathsf{Tr}[\boldsymbol{\rho}(\epsilon)\mathbf{S}] \\ &\mathrm{DOS}(\epsilon) = -\frac{1}{\pi} \mathsf{Im} \, \mathsf{Tr}[\mathbf{G}(\epsilon)\mathbf{S}] \\ &\mathrm{ADOS}(\epsilon) = \frac{1}{2\pi} \, \mathsf{Re} \, \mathsf{Tr}[\mathcal{A}_{\epsilon}(\epsilon)\mathbf{S}] \\ &\mathrm{DOS}(\epsilon) = \sum_{\epsilon} \mathsf{ADOS}(\epsilon) + \mathsf{bound} \, \mathsf{states} \end{aligned}$$

ullet Local density of states on orbital u

$$\begin{aligned} &\mathrm{DOS}_{\nu}(\epsilon) = [\boldsymbol{\rho}(\epsilon)\mathbf{S}]_{\nu,\nu} \\ &\mathrm{DOS}_{\nu}(\epsilon) = -\frac{1}{\pi}\mathrm{Im}[\mathbf{G}(\epsilon)\mathbf{S}]_{\nu,\nu} \\ &\mathrm{ADOS}_{\nu}(\epsilon) = \frac{1}{2\pi}\mathrm{Re}[\mathcal{A}_{\epsilon}(\epsilon)\mathbf{S}]_{\nu,\nu} \\ &\mathrm{DOS}_{\nu}(\epsilon) = \sum_{\epsilon}\mathrm{ADOS}_{\nu}(\epsilon) + \mathrm{bound\ states}_{\nu} \end{aligned}$$

Density of states

• Density of states over all orbitals

$$\begin{split} &\mathrm{DOS}(\epsilon) = \mathrm{Tr}[\rho(\epsilon)\mathbf{S}] \\ &\mathrm{DOS}(\epsilon) = -\frac{1}{\pi}\mathrm{Im}\,\mathrm{Tr}[\mathbf{G}(\epsilon)\mathbf{S}] \\ &\mathrm{ADOS}(\epsilon) = \frac{1}{2\pi}\,\mathrm{Re}\,\mathrm{Tr}[\mathcal{A}_{\epsilon}(\epsilon)\mathbf{S}] \\ &\mathrm{DOS}(\epsilon) = \sum_{\epsilon}\mathrm{ADOS}(\epsilon) + \mathrm{bound}\,\mathrm{states} \end{split}$$

ullet Local density of states on orbital u

$$\begin{aligned} &\mathrm{DOS}_{\nu}(\epsilon) = [\rho(\epsilon)\mathbf{S}]_{\nu,\nu} \\ &\mathrm{DOS}_{\nu}(\epsilon) = -\frac{1}{\pi}\mathrm{Im}[\mathbf{G}(\epsilon)\mathbf{S}]_{\nu,\nu} \\ &\mathrm{ADOS}_{\nu}(\epsilon) = \frac{1}{2\pi}\mathrm{Re}[\mathcal{A}_{\epsilon}(\epsilon)\mathbf{S}]_{\nu,\nu} \\ &\mathrm{DOS}_{\nu}(\epsilon) = \sum_{\epsilon}\mathrm{ADOS}_{\nu}(\epsilon) + \mathrm{bound\ states}_{\nu} \end{aligned}$$

• The overlap matrix is extremely important when calculating the density of states!

4 ロ ト 4 回 ト 4 豆 ト 4 豆 ト 9 Q C

Density of states

Density of states over all orbitals

$$\begin{aligned} & \mathrm{DOS}(\epsilon) = \mathsf{Tr}[\boldsymbol{\rho}(\epsilon)\mathbf{S}] \\ & \mathrm{DOS}(\epsilon) = -\frac{1}{\pi}\mathrm{Im}\,\mathsf{Tr}[\mathbf{G}(\epsilon)\mathbf{S}] \\ & \mathrm{ADOS}(\epsilon) = \frac{1}{2\pi}\,\mathsf{Re}\,\mathsf{Tr}[\mathcal{A}_{\epsilon}(\epsilon)\mathbf{S}] \\ & \mathrm{DOS}(\epsilon) = \sum_{\epsilon}\mathrm{ADOS}(\epsilon) + \mathsf{bound}\,\mathsf{states} \end{aligned}$$

ullet Local density of states on orbital u

$$\begin{aligned} &\mathrm{DOS}_{\nu}(\epsilon) = [\boldsymbol{\rho}(\epsilon)\mathbf{S}]_{\nu,\nu} \\ &\mathrm{DOS}_{\nu}(\epsilon) = -\frac{1}{\pi}\mathrm{Im}[\mathbf{G}(\epsilon)\mathbf{S}]_{\nu,\nu} \\ &\mathrm{ADOS}_{\nu}(\epsilon) = \frac{1}{2\pi}\mathrm{Re}[\mathcal{A}_{\epsilon}(\epsilon)\mathbf{S}]_{\nu,\nu} \\ &\mathrm{DOS}_{\nu}(\epsilon) = \sum_{\epsilon}\mathrm{ADOS}_{\nu}(\epsilon) + \mathrm{bound\ states}_{\nu} \end{aligned}$$

- The overlap matrix is extremely important when calculating the density of states!
- ullet broadens the DOS similarly to a large η value, for states coupling to the electrodes

←□▶←□▶←□▶←□▶ □ ♥♀

Creating a benzene dithiol (BDT) geometry

- Motivation
 - Transport properties of atomistic systems
- 2 Self-energy
 - The concept
 - Bulk self-energy requirements
- Green function theory
 - Introduction
 - Rules of integration
 - Advancing to Non-Equilibrium Green Function
- 4 Self-energy
 - The concept
 - Bulk self-energy requirements
- **(5)** Non-equilibrium Green function
 - Variables
 - Density of states
- 6 Creating a benzene dithiol (BDT) geometry
 - Reiterate self-energy requirements
 - Electrodes
 - Molecule
 - Intermediate
 - Intermediate electrode layers
 - Finalising simulation
- 7 Tutorial

Reiterate self-energy requirements

Rules for using self-energies

Coupling a *bulk* electrode to a device requires(!) coupling region to behave *bulk* as well.

- \bullet Remember that $\Sigma_{-/+}$ is a correction to the Hamiltonian (i.e. $H'=H+\Sigma)$
- Extremely important in TranSiesta, electrostatics are long-range!

→□→→□→→□→ ■ 90

Electrode

- BDT attached to Gold electrodes
- We utilise 100 surface (AB-stacking)
- Converge *k*-point sampling in transverse direction

Electrode

- BDT attached to Gold electrodes
- We utilise 100 surface (AB-stacking)
- Converge *k*-point sampling in transverse direction

Is there anything special about this electrode?

Electrode

- BDT attached to Gold electrodes
- We utilise 100 surface (AB-stacking)
- Converge *k*-point sampling in transverse direction

Is there anything special about this electrode?

BDT

Define the molecule

• Relax structure using SIESTA

Intermediate connect

Attach gold to the molecule

- Consider stacking of pyramids
 - A-BDT-A
 - A-BDT-B
 - B-BDT-B
- Relax structure again, constrain the pyramids

Intermediate electrode layers

Attach a couple of electrode layers

- Follow the stacking!
- Relax structure again, constrain the electrode layers

Attach electrode and more intermediate layers

Attach the electrodes on both sides (converge number of intermediate layers), use Bloch's theorem(!)

- Follow the stacking!
- Relax structure again, constrain the electrode layers
- Determining the extra number of layers:
 - Consider the molecule as a "defect"
 - The defect has a screening length in the central region (the extra electrode layers)
 - Ensure that the electrodes "behave as bulk" electrodes (away from defect)

31/32

Attach electrode and more intermediate layers

Attach the electrodes on both sides (converge number of intermediate layers), use Bloch's theorem(!)

- Follow the stacking!
- Relax structure again, constrain the electrode layers
- Determining the extra number of layers:
 - Consider the molecule as a "defect"
 - The defect has a screening length in the central region (the extra electrode layers)
 - Ensure that the electrodes "behave as bulk" electrodes (away from defect)
- What does a metallic electrode require:
 - Bad screening → many extra electrode layers
 - ② Good screening → few extra electrode layers
- What does a semi-conducting electrode require:
 - Bad screening → many extra electrode layers
 - Good screening → few extra electrode layers

4 다 > 4 급 > 4 로 > 로 9 Q Q > 31/32

Attach electrode and more intermediate layers

Attach the electrodes on both sides (converge number of intermediate layers), use Bloch's theorem(!)

- Follow the stacking!
- Relax structure again, constrain the electrode layers
- Determining the extra number of layers:
 - Consider the molecule as a "defect"
 - The defect has a screening length in the central region (the extra electrode layers)
 - Ensure that the electrodes "behave as bulk" electrodes (away from defect)
- What does a metallic electrode require:
 - Bad screening → many extra electrode layers
 - ② Good screening → few extra electrode layers
- What does a semi-conducting electrode require:
 - Bad screening → many extra electrode layers
 - ② Good screening → few extra electrode layers

Tutorial

- Tutorial focuses on interpreting physical things, such as potential drop, projected density of states
- More tutorials are available here: https://github.com/zerothi/ts-tbt-sisl-tutorial
- Doing this tutorial can be hard on Marenostrum (requires copying data back to your PC). Please use Google colab or your own computer.
- On the Discord channel in Day 5, you will find the link to the tutorial.

