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Calculating transport properties of atomistic systems

Steady-state transport properties?

Weneedascalablecomputatio
nalm

odel!

And . . .
howtomodelnon-equilib

riu
m?

Williams et.al.: 10.1126/science.1144657
Prins et.al.: 10.1021/nl202065x
Nick Papior; DTU Compute 4/32

https://dx.doi.org/10.1126/science.1144657
https://dx.doi.org/10.1021/nl202065x
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Calculating transport properties of atomistic systems

Steady-state transport properties?

Simulation tool requirements
Systems under non-equilibrium (applied bias)

Large system calculations (incorporate full device)

Multi-electrode devices

Non-Equilibrium Green function (NEGF)

Williams et.al.: 10.1126/science.1144657, Prins et.al.: 10.1021/nl202065x

WebOfScience (NEGF)
Nick Papior; DTU Compute 5/32
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Self-energy
The concept

Self-energies – perturb the Hamiltonian
A self-energy renormalises the Hamiltonian

H′ = H+Σ

May describe wide variety of physical properties

Semi-infinity
Local defects
Absorbing potentials
. . .

TranSiesta, self-energies are only semi-infinite leads

! TBtrans allows custom (additional) self-energies, even when calculating transport from DFT
Hamiltonians
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Self-energy
Semi-infinity

Describes interaction of a system to a semi-infinite region

Self-energy calculations require no more than nearest neighbour interactions between
unit-cells

Σ{1,1}(E) = V†
[
E + iÙ−H

]−1
V

...

Σ{i ,1}(E) = V†
[
E + iÙ−H−Σ{i−1,1}(E)

]−1
V

Continue until Σ{i ,1} ≈ Σ{i+1,1}

Nick Papior; DTU Compute 8/32



Self-energy
Semi-infinity – which unit-cells?

a)
V

V′
V′′ ≡ 0

b)
V

V′
V′′ ≡ 0

c)
V

V′
V′′ ≡ 0

This is only a requirement along the semi-infinite direction!

Nick Papior; DTU Compute 9/32
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Self-energy
Semi-infinity – rules

Rules for using self-energies
Coupling a bulk electrode to a device requires(!) coupling region to behave bulk as well.

Σ− H0 H0

V0

V†0

H0

V0

V†0

H1

V1

V†1

H2

V2

V†2

H3

V3

V†3

H4

V4

V†4

H4

V5

V†5

H4

V5

V†5

Σ+

Remember that Σ−/+ is a correction to the Hamiltonian (i.e. H′ = H+Σ)

Σ− into 1st H0? Σ− into 2nd H0? Σ− into 3rd H0? Σ− into H1?
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Green function
Introduction

The single particle Green function may be written as:

[(E + iÙ)I−Hk]Gk(E) = I

This may be rewritten in terms of the eigenstates

Gk(E) =
¼
i

|èi ,k⟩⟨èi ,k|
E + iÙ− ×i ,k

Taking the imaginary part of the Green function yields

ℑGk(E) = −
¼
i

|èi ,k|2Li ,k(E)

Li ,k(E) =
Ù

(E − ×i ,k)2 + Ù2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

2Ù

∫
= á

Energy

L
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Green function
Rules of integration – Energy

Numeric integration of Green function

−1
á

" E ′′

E ′
dEdkℑGk(E) ≈ −1

á

¼
k

Ök
(E ′′−E ′ )/ÖE¼

j

ÖEℑGk(E ′ + jÖE)

Are there any problems here?

What if ÖE ≪ Ù?

Good! The energy spacing is much smaller than FWHM.

What if ÖE ≫ Ù?

Bad! The energy spacing is much larger than FWHM. Dependent on the initial E ′ you will find different
DOS as some eigenstates may be passed.

What if ÖE ≈ Ù?

Ok! The energy spacing is half-width at half-maximum. This will typically yield a fine integration.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

2Ù

∫
= á

Energy

L

Return to DOS
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Green function
Rules of integration – Brillouin Zone

Numeric integration of Green function

−1
á

" E ′′

E ′
dEdkℑGk(E) ≈ −1

á

¼
k

Ök
(E ′′−E ′ )/ÖE¼

j

ÖEℑGk(E ′ + jÖE)

The Brillouin zone integration is just as important as the energy integration.

Prior understanding of the electronic structure of the system is important!

Choose Ök such that band-energies Ek − Ek+Ök ≈ Ù. Otherwise band features will not be captured.

Difference between diagonalisation and Green function methods

Diagonalization

1D-sampling
k-points, all energy-eigenvalues

Green functions

2D-sampling
k and E-points are both required to be
sampled
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Advancing→ NEGF

Single particle Green function

[(E + iÙ)I−Hk]Gk(E) = I

Non-equilibrium Green function

[(E + iÙ)S−Hk −
¼
e

Σe,k(E −Þe)]Gk(E) = I

Additional terms:

S is the overlap matrix which is needed for non-orthogonal basis sets.

Σ is the self-energy which is describing semi-infinite directions (integrating out k in that
direction)

−∞ = Σ← +∞ = Σ→

−∞ = Σ← +∞ = Σ→

−∞ = Σ← +∞ = Σ→

−∞ = Σ← +∞ = Σ→

Self-energies have “large” imaginary components smearing the DOS for states coupled to the
leads. The imaginary part (Ù) can thus often be neglected in the device regiona.

aNot for bound states.
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Important
Understanding self-energies is like, really, really important.
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Self-energy
The concept

Self-energies – perturb the Hamiltonian
A self-energy renormalises the Hamiltonian

H′ = H+Σ

May describe wide variety of physical properties

Semi-infinity
Local defects
Absorbing potentials
. . .

TranSiesta, self-energies are only semi-infinite leads

! TBtrans allows custom (additional) self-energies, even when calculating transport from DFT
Hamiltonians
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Self-energy
Semi-infinity

Describes interaction of a system to a semi-infinite region
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Self-energy
Semi-infinity – rules

Rules for using self-energies
Coupling a bulk electrode to a device requires(!) coupling region to behave bulk as well.
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Remember that Σ−/+ is a correction to the Hamiltonian (i.e. H′ = H+Σ)

Σ− into 1st H0? Σ− into 2nd H0? Σ− into 3rd H0? Σ− into H1?
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Rules for using self-energies
Coupling a bulk electrode to a device requires(!) coupling region to behave bulk as well.
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Non-equilibrium Green function

1 Motivation
Transport properties of atomistic systems

2 Self-energy
The concept
Bulk self-energy requirements

3 Green function theory
Introduction
Rules of integration
Advancing to Non-Equilibrium Green Function

4 Self-energy
The concept
Bulk self-energy requirements

5 Non-equilibrium Green function
Variables
Density of states

6 Creating a benzene dithiol (BDT) geometry
Reiterate self-energy requirements
Electrodes
Molecule
Intermediate
Intermediate electrode layers
Finalising simulation

7 Tutorial
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Non-equilibrium Green function
Variables

Important variables in Green function techniques
e electrode index
Hk Hamiltonian
Sk Overlap, for orthogonal basis sets equals I
ρk Density matrix
Σk(×) Self-energy (not necessarily an electrode!)
Γ e,k(×) Scattering matrix from e

Gk(×) Green function
Ae,k(×) Spectral function originating from e

Te→e′ (×) Transmission function from e to e′
Te(×) Total transmission function out of e

Basic equations for Green function techniques

Gk(×) =
[
(×+ iÙ)Sk −Hk −

¼
e

Σe,k(×−Þe)
]−1

Γ e,k(×) = i
(
Σe,k(×−Þe)−Σ†e,k(×−Þe)

)
Ae,k(×) = Gk(×)Γ e,k(×)G†k(×)
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Non-equilibrium Green function
Density of states

Density of states over all orbitals

DOS(×) = Tr[ρ(×)S]

DOS(×) = −1
á
ℑTr[G(×)S]

ADOS(×) =
1

2á
ℜTr[Ae(×)S]

DOS(×) =
¼
e

ADOS(×) + bound states

Local density of states on orbital ß

DOSß(×) = [ρ(×)S]ß,ß

DOSß(×) = −1
á
ℑ[G(×)S]ß,ß

ADOSß(×) =
1

2á
ℜ[Ae(×)S]ß,ß

DOSß(×) =
¼
e

ADOSß(×) + bound statesß

The overlap matrix is extremely important when calculating the density of states!

Σ broadens the DOS similarly to a large Ù value, for states coupling to the electrodes
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Creating a benzene dithiol (BDT) geometry

1 Motivation
Transport properties of atomistic systems

2 Self-energy
The concept
Bulk self-energy requirements

3 Green function theory
Introduction
Rules of integration
Advancing to Non-Equilibrium Green Function

4 Self-energy
The concept
Bulk self-energy requirements

5 Non-equilibrium Green function
Variables
Density of states

6 Creating a benzene dithiol (BDT) geometry
Reiterate self-energy requirements
Electrodes
Molecule
Intermediate
Intermediate electrode layers
Finalising simulation

7 Tutorial
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Reiterate self-energy requirements

Rules for using self-energies
Coupling a bulk electrode to a device requires(!) coupling region to behave bulk as well.

Σ− H0 H0

V0

V†0

H0

V0

V†0

H1

V1

V†1

H2

V2

V†2

H3

V3

V†3

H4

V4

V†4

H4

V5

V†5

H4

V5

V†5

Σ+

Remember that Σ−/+ is a correction to the Hamiltonian (i.e. H′ = H+Σ)

Extremely important in TranSiesta, electrostatics are long-range!
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Benzene dithiol (BDT)
Electrode

BDT attached to Gold electrodes

We utilise 100 surface (AB-stacking)

Converge k-point sampling in transverse direction

T

Is there anything special about this electrode?

Nick Papior; DTU Compute 27/32
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Benzene dithiol (BDT)
BDT

Define the molecule

T

Relax structure using SIESTA
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Benzene dithiol (BDT)
Intermediate connect

Attach gold to the molecule

T

Consider stacking of pyramids
A-BDT-A
A-BDT-B
B-BDT-B

Relax structure again, constrain the pyramids
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Benzene dithiol (BDT)
Intermediate electrode layers

Attach a couple of electrode layers

T

Follow the stacking!

Relax structure again, constrain the electrode layers
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Benzene dithiol (BDT)
Attach electrode and more intermediate layers

Attach the electrodes on both sides (converge number of intermediate layers), use Bloch’s
theorem(!)

T

Follow the stacking!

Relax structure again, constrain the electrode layers
Determining the extra number of layers:

Consider the molecule as a “defect”
The defect has a screening length in the central region (the extra
electrode layers)
Ensure that the electrodes “behave as bulk” electrodes (away
from defect)

What does a metallic electrode require:

1 Bad screening→many extra electrode layers
2 Good screening→ few extra electrode layers

What does a semi-conducting electrode require:

1 Bad screening→many extra electrode layers
2 Good screening→ few extra electrode layers
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Tutorial

Tutorial focuses on interpreting physical things, such as potential drop, projected density of
states

More tutorials are available here:
https://github.com/zerothi/ts-tbt-sisl-tutorial

Doing this tutorial can be hard on Marenostrum (requires copying data back to your PC).
Please use Google colab or your own computer.

On the Discord channel in Day 5, you will find the link to the tutorial.

Nick Papior; DTU Compute 32/32

https://github.com/zerothi/ts-tbt-sisl-tutorial
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