

Analysis II: visualization of dynamics and vibrational modes

Roberta Farris, 13th November 2024

Vibration modes and phonons

In this set of exercises we will use the method of finitedifferences implemented in Siesta to compute force constants in real space. We will explore the cases of a crystal and a molecule. In the former case we will focus on the need of a supercell to represent the real-space force constants, while in the second we will understand how to visualize the vibrational modes.

Have you set up the local environment?

If not, do that now before proceeding.

Note

Phonon calculations can be very sensitive to numerical artifacts such as those derived from the eggbox effect. Be sure to have the rest of your simulation parameters already converged as best as you can before running the actual force constant matrix calculations.

- Phonon dispersion of bulk Si
- Modes of vibration of the benzene molecule

Step 1: relax the structure

The input file has been prepared for you in the file benzene.relax.fdf

siesta benzene.relax.fdf > benzene.relax.out

```
%block Zmatrix
molecule
2 0 0 0 xm1 ym1 zm1
1 5 4 10 CH CCH 0.0
1 6 5 11 CH CCH 0.0 0 0 0
constants
 ym1 5.00
 zm1 0.00
 CCC 120.0
 CCH 120.0
variables
 CC 1.390
 CH 1.090
constraints
 xm1 CC -1.0 3.903229
%endblock Zmatrix
```

Step 2: Compute the Interatomic Force Constants

There is already a prepared input file with the relaxed structure.

In principle, you should copy the relaxed coordinates and unit cell from the **benzene.XV** obtained in the previous step.

```
LatticeConstant
                    1.0 Bohr
%block LatticeVectors
 21,938124322
                    0.000000000
                                      0.000000000
  0.000000000
                   20.556799916
                                      0.000000000
  0.000000000
                    0.000000000
                                     11.910755412
%endblock LatticeVectors
AtomicCoordinatesFormat NotScaledCartesianBohr
%block AtomicCoordinatesAndAtomicSpecies
   4.732644349
                 9.448630623
                                                12.01070
   6.054339080 11.737873050
                               0.000000000
   8.697728543 11.737873050
                               0.000000000
                                                12.01070
  10.019423274
                 9.448630623
                                                12.01070
                               0.000000000
   8.697728543
                 7.159388196
                                                12.01070
   6.054339080
                 7.159388196
                                                12.01070
   2.637688094
                 9.448630623
                               0.000000000 1
                                                 1.00794
   5.006860953 13.552158387
                               0.000000000 1
                                                 1.00794
               13.552158387
                                                 1.00794
  12.114379529
                 9.448630623
                                                 1.00794
                               0.000000000 1
   9.745206671
                 5.345102860
                                                 1.00794
   5.006860953
                 5.345102806
                               0.000000000 1
                                                 1.00794
%endblock AtomicCoordinatesAndAtomicSpecies
```

Step 2: Compute the Interatomic Force Constants

There is already a prepared input file with the relaxed structure.

In principle, you should copy the relaxed coordinates and unit cell from the **benzene.XV** obtained in the previous step.

siesta < benzene.ifc.fdf > benzene.ifc.out

Step 3: Compute the Dynamical Matrix at Gamma

In the case of a molecule, only the Gamma point is relevant. It is specified in the same way as to compute the electronic band structure, in the same file benzene.ifc.fdf

```
Eigenvectors .true. # Compute both phonon eigenvalues and eigenvectors
BandLinesScale pi/a
%block BandLines
1 0.0 0.0 0.0 \Gamma # Only the Gamma point (enough for a molecule)
%endblock BandLines
```

Step 3: Compute the Dynamical Matrix at Gamma

In the case of a molecule, only the Gamma point is relevant. It is specified in the same way as to compute the electronic band structure, in the same file benzene.ifc.fdf

```
Eigenvectors .true. # Compute both phonon eigenvalues and eigenvectors
BandLinesScale pi/a
%block BandLines
1 0.0 0.0 0.0 \Gamma # Only the Gamma point (enough for a molecule)
%endblock BandLines
```

vibra < benzene.ifc.fdf > vibra.out

Step 4: Visualization of the normal modes

Needed files:

benzene.XV benzene.vectors You need to specify:

- 1) units of lattice vectors (Angstroms or Bohr)
- 2) the zero of the coordinates
- 3) the unit cell lattice vectors
- 4) modes to visualize (the first and the last)
- 5) the amplitude
- 6) the steps of the animation

Step 4: Visualization of the normal modes

Needed files:

benzene.XV benzene.vectors You need to specify:

- 1) units of lattice vectors (Angstroms or Bohr)
- 2) the zero of the coordinates
- 3) the unit cell lattice vectors
- 4) modes to visualize (the first and the last)
- 5) the amplitude
- 6) the steps of the animation

Step 4: Visualization of the normal modes

Needed files:

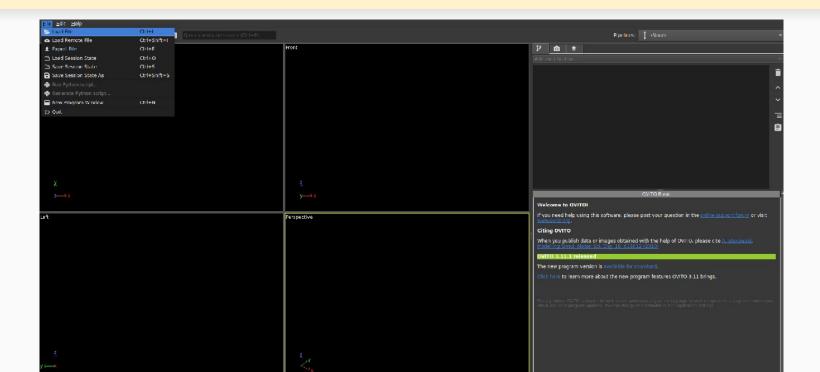
benzene.XV benzene.vectors You need to specify:

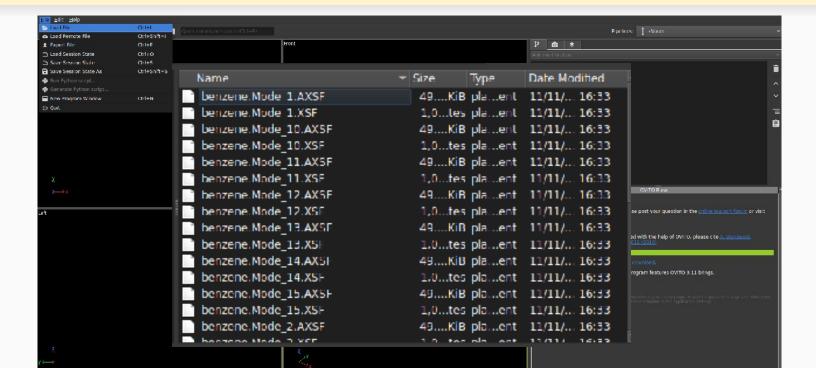
- 1) units of lattice vectors (Angstroms or Bohr)
- 2) the zero of the coordinates
- 3) the unit cell lattice vectors
- 4) modes to visualize (the first and the last)
- 5) the amplitude
- 6) the steps of the animation

vib2xsf < vib2xsf.dat

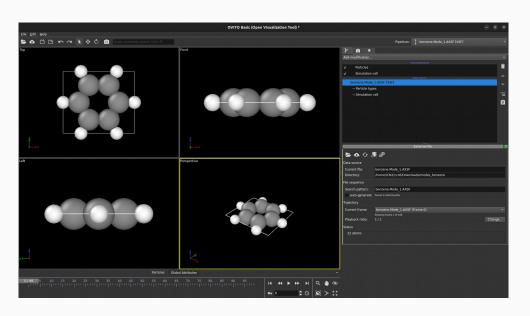
Step 4: Visualization of the normal modes

Output files:

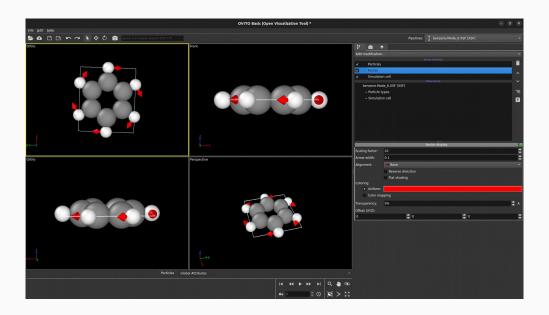

Benzene.Mode_*.XSF: contains a static structures (as in .XV), with arrors added to each atom to indicate displacement pattern.

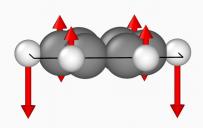

Benzene.Mode_*.AXSF: contains the animation of a phonon, for a defined amplitude and number of steps.

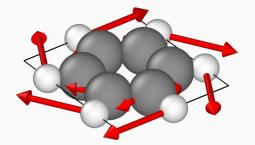
Step 4: Visualization of the normal modes


Ovito:

```
$ ovito
File > Load File
Load benzen.Mode_*.AXSF
```




Step 4: Visualization of the normal modes: *.AXSF file



Step 4: Visualization of the normal modes: *.XSF file

Step 4: Visualization of the normal modes

Questions?