
1 Installation

2 Lua in Siesta
MPI and Lua
What can you do?
Tutorial

3 sisl
Tutorial

June 2, 2025 1 / 9

Installation

Install sisl, conda install sisl or pip install sisl

Install flos, github.com/siesta-project/flos
Download, and extract, then set:

export LUA_PATH="<path>/flos/?.lua;<path>/flos/?/init.lua;$LUA_PATH"

June 2, 2025 2 / 9

github.com/siesta-project/flos

Lua in Siesta

New-comers (devs) to SIESTA have a very large barrier on entry to
the code

Implementations of different molecular dynamics routines are very
time consuming given the importance of prior knowledge to SIESTA

Developers spend much time on 1) compiling, 2) debugging code in
fortran, 3) running examples

What if we could make everything easier by allowing a higher level
language?

Lua

A high-level language built for small memory footprint, easy-to-learn and
high flexibility.
Downside is that the core-language is very limited on purpose!

June 2, 2025 3 / 9

Lua in Siesta

New-comers (devs) to SIESTA have a very large barrier on entry to
the code

Implementations of different molecular dynamics routines are very
time consuming given the importance of prior knowledge to SIESTA

Developers spend much time on 1) compiling, 2) debugging code in
fortran, 3) running examples

What if we could make everything easier by allowing a higher level
language?

Lua

A high-level language built for small memory footprint, easy-to-learn and
high flexibility.
Downside is that the core-language is very limited on purpose!

June 2, 2025 3 / 9

Lua in Siesta

New-comers (devs) to SIESTA have a very large barrier on entry to
the code

Implementations of different molecular dynamics routines are very
time consuming given the importance of prior knowledge to SIESTA

Developers spend much time on 1) compiling, 2) debugging code in
fortran, 3) running examples

What if we could make everything easier by allowing a higher level
language?

Lua

A high-level language built for small memory footprint, easy-to-learn and
high flexibility.
Downside is that the core-language is very limited on purpose!

June 2, 2025 3 / 9

Lua in Siesta

New-comers (devs) to SIESTA have a very large barrier on entry to
the code

Implementations of different molecular dynamics routines are very
time consuming given the importance of prior knowledge to SIESTA

Developers spend much time on 1) compiling, 2) debugging code in
fortran, 3) running examples

What if we could make everything easier by allowing a higher level
language?

Lua

A high-level language built for small memory footprint, easy-to-learn and
high flexibility.
Downside is that the core-language is very limited on purpose!

June 2, 2025 3 / 9

Lua in Siesta

New-comers (devs) to SIESTA have a very large barrier on entry to
the code

Implementations of different molecular dynamics routines are very
time consuming given the importance of prior knowledge to SIESTA

Developers spend much time on 1) compiling, 2) debugging code in
fortran, 3) running examples

What if we could make everything easier by allowing a higher level
language?

Lua

A high-level language built for small memory footprint, easy-to-learn and
high flexibility.
Downside is that the core-language is very limited on purpose!

June 2, 2025 3 / 9

How it works

An interface between SIESTA and Lua is enabled through: flook

Enables exchange of data between the scripting language and the
SIESTA core.

Change forces → custom constraints

Change positions → custom MD

Change energies → custom energy-corrections

Change insert-your-variable(s) → custom ???

ANYTHING MAY BE CHANGED!

There are limitations with respect to MPI and currently available
variables, however any new variable requires 1 line of fortran code.

June 2, 2025 4 / 9

How it works

An interface between SIESTA and Lua is enabled through: flook

Enables exchange of data between the scripting language and the
SIESTA core.

Change forces → custom constraints

Change positions → custom MD

Change energies → custom energy-corrections

Change insert-your-variable(s) → custom ???

ANYTHING MAY BE CHANGED!

There are limitations with respect to MPI and currently available
variables, however any new variable requires 1 line of fortran code.

June 2, 2025 4 / 9

MPI vs. Lua

SIESTA job

#0

L0

#1

L1

#2

L2

#3

L3

#4

L4

#5

L5

Nodes MPI communication

Lua instances Other layer

June 2, 2025 5 / 9

What is possible now?

flos

Lua library to perform these optimizations:

Conjugate-gradient geometry optimization

FIRE geometry optimization

L-BFGS geometry optimization (extremely efficient)

Force-constants

NEB calculator (same as in VASP texas group)

Mesh-cutoff convergence in one run

Dependency Tests/lua h2o

June 2, 2025 6 / 9

Tutorial

Transferability

The Lua scripts in these tutorials can directly be transferred to other
systems.

1 Convergence of the mesh-cutoff

2 Geometry optimization:

Default siesta CG method
Lua CG method
Lua L-BFGS method
mixing of Lua CG/L-BFGS methods for faster optimization

June 2, 2025 7 / 9

sisl

What is it?

sisl is a powerful tool to create, post-process, and do tight-binding
explorations in pure Python.
It interfaces with Siesta in many ways and can easily be used to create
input tight-binding matrices for NEGF calculations (TBtrans).
Additionally, it can read and understand Siesta matrices, and thus do
band-structure calculations, PDOS and much more. . .

sisl can

interface seamlessly with ASE, pymatgen etc.
read Hamiltonians, density matrices and can do analysis on these
understand all spin-configurations (up to Nambu-spin, see Zeila’s talk
later)
allow custom scripting in Python to create custom workflows
interface to other DFT codes (tries to be code agnostic)
do advanced visualization of geometries, density of states, eigenstates
etc. (work by Pol Febrer)

June 2, 2025 8 / 9

Tutorials

June 2, 2025 9 / 9

	Installation
	Lua in Siesta
	MPI and Lua
	What can you do?
	Tutorial

	sisl
	Tutorial

