

# Advanced SIESTA Workshop 2025 Lindhard response function

Bogdan Guster

## Broad survey over popular metals phase diagrams



CUPRATE PHASE DIAGRAM

Strange metal

Charge density waves

Superconductor Normal metal

Quantum critical point

O 0.1 0.2 0.3

Hole doping (per Cu atom)

Phys. Rev. B 91, 205114

### Where about Lindhard function is useful?





Phys. Rev. Lett. 103, 236401



Phys. Rev. B 91, 205114

#### CUPRATE PHASE DIAGRAM



### Where about Lindhard function is useful?





Lindhard function can provide insight into the behaviour of Charge Density Waves

## General aspects of Lindhard response function

$$\chi_{0}(\mathbf{q}, \omega) = \frac{1}{V} \sum_{n, n'} \sum_{\mathbf{k}} \frac{f(\varepsilon_{n\mathbf{k}}) - f(\varepsilon_{n'\mathbf{k} + \mathbf{q}})}{\hbar \omega + \varepsilon_{n\mathbf{k}} - \varepsilon_{n'\mathbf{k} + \mathbf{q}} + i\eta} \left| \langle n\mathbf{k} | e^{i\mathbf{q} \cdot \mathbf{r}} | n'\mathbf{k} + \mathbf{q} \rangle \right|^{2}$$

$$f(\varepsilon_{n\mathbf{k}}) = \frac{1}{e^{(\varepsilon_{n\mathbf{k}} - \varepsilon_{F})/k_{B}T} + 1}$$

- *f* Fermi-Dirac (FD) distribution
- $\varepsilon_{n\mathbf{k}}$  electronic energy eigenvalue of band n with wavevector **k**
- $\varepsilon_{n\mathbf{k}+\mathbf{q}}$  electronic energy eigenvalue of band n with wavevector  $\mathbf{k}$  after scattering by  $\mathbf{q}$
- $\omega$  phonon energy (or more generally frequency of perturbation)

but, in the case of Fermi surface nesting, static limit will suffice ( $\omega \rightarrow 0$ )

$$\chi_0(\mathbf{q}) = \frac{1}{V} \sum_{n,n'} \sum_{\mathbf{k}} \frac{f(\varepsilon_{n\mathbf{k}}) - f(\varepsilon_{n'\mathbf{k}+\mathbf{q}})}{\varepsilon_{n\mathbf{k}} - \varepsilon_{n'\mathbf{k}+\mathbf{q}} + i\eta} |\langle n\mathbf{k}|e^{i\mathbf{q}\cdot\mathbf{r}}|n'\mathbf{k}+\mathbf{q}\rangle|^2$$

## General aspects of Lindhard response function

$$\chi_0(\mathbf{q}) = \frac{1}{V} \sum_{n,n'} \sum_{\mathbf{k}} \frac{f(\varepsilon_{n\mathbf{k}}) - f(\varepsilon_{n'\mathbf{k}+\mathbf{q}})}{\varepsilon_{n\mathbf{k}} - \varepsilon_{n'\mathbf{k}+\mathbf{q}} + i\eta} |\langle n\mathbf{k}|e^{i\mathbf{q}\cdot\mathbf{r}}|n'\mathbf{k} + \mathbf{q}\rangle|^2$$

assuming matrix elements have maximum overlap this simplifies to:



$$\chi_0(\mathbf{q}) = \frac{2}{V} \sum_{\mathbf{k}} \frac{f(\varepsilon_{\mathbf{k}}) - f(\varepsilon_{\mathbf{k}+\mathbf{q}})}{\varepsilon_{\mathbf{k}} - \varepsilon_{\mathbf{k}+\mathbf{q}}}$$

### General aspects of Fermi Surface Nesting



$$\chi_0(\mathbf{q}) = \frac{2}{V} \sum_{\mathbf{k}} \frac{f(\varepsilon_{\mathbf{k}}) - f(\varepsilon_{\mathbf{k}+\mathbf{q}})}{\varepsilon_{\mathbf{k}} - \varepsilon_{\mathbf{k}+\mathbf{q}}}$$





### Lindhard vs Bethe-Saltpeter

- Suitable for studying metals

#### Pros:

- Simple to implement
- Relatively easy to understand
- Computationally cheap

#### Cons (depending on what you do):

- Non-interacting electron-hole particle
- No Coulomb kernel
- No exciton binding
- Unsuitable in describing strong e-h interaction



- Suitable for studying semiconductors

#### Pros:

- Includes the Coulomb kernel
- Useful in studying excitons
- Useful in providing absorption spectra

#### Cons (depending on what you do):

- Technically demanding to implement
- Computationally costly
- Requires quasiparticles energies (e.g. G0W0)



## Keywords - lindhard < siesta.fdf

- Lindhard.Temperature 10 K # Controls the temperature of the FD distribution
- Lindhard.firstband
   1
   # Meaningful for the first band intersecting the FS
- Lindhard.lastband
   2
   # Meaningful for the last band intersecting the FS
- Lindhard.ngridx
   122 # Interpolating on a much denser grid
- Lindhard.ngridy
   243 # of k-points than the one used
- Lindhard.ngridz
   88 # in the single-point DFT calculation
- Lindhard.nq1 n # Print in the siesta.lindhard every n<sup>th</sup> point
- Lindhard.nq2 m # from the interpolated series of points

## Very simple example – H chain (Ex 1)



## Real case scenario – $K_{0.3}MoO_3$ (Ex 2)

#### Crystal structure



#### Electronic band structure



## Real case scenario – K<sub>0.3</sub>MoO<sub>3</sub>

Section of the FS along c\*



3D View of the FS





## Real case scenario – K<sub>0.3</sub>MoO<sub>3</sub>



