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The physics of low-energy matter
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Made of electrons & nuclei
(interacting with photons)

S
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matter at T up to several millon K

(except for nuclear fission and radioactive decay)

- Atomic & molecular physics
- Condensed matter physics (solids, liquids)
- Plasma physics

Low energy in the sense of
not probing inner structure of nuclei




The physics of low-energy matter

Behind properties and processes in

- Chemistry
- Biomedicine (biochem, biophys, molecular bio) Farth's Inerior © ASX CAnada
- Geo (geophyiscs, geochemistry)

- Lots of astrophysics (planets, exoplanets)
- Engineering (materials, electronics ...)

- Energy research

- Nanoscience and technlogy




Even a white dwarf
Carbon at high T and P

T. Metcalfe, M. Montgomery & K. Kaana

) ) Astrophys. J. Lett. (2004)
White dwarf (dead star) in

Centaur (50 light-years away)
R = 2000 Km (< Earth)

M = 300,000 x Mg,

T =2 million K

Density = 10° gr/cc

Lucy



Just electrons and nuclei

The underlying physical laws necessary
for the mathematical theory of . . . the
whole of chemistry are thus completely
known, and the difficulty is only that the
exact application of these laws leads to
equations much too complicated to be

soluble.

Paul Dirac, 1929



Just electrons and nuclei?

Dirac’s statement just after quantum revolution
Quantum mechanics
of Heisenberg (1925) and Schrbdinger (1926)

Schrbdinger equation:

H\P(;.;’?Z’”";:N) = E‘"I’(;ia?zvﬂa?N)

This is the fundamental equation to be solved for
most systems of electrons and nuclei.

A function defined in a space of
3N dimensions
(N = number of particles) (most = non-relativistic)




Just electrons and nuclei?
Exponential Comp/eXIty

HY( T,,.... 1) = EW(h5y0hy) 7

Solving in a computer:
e.g. discretising space

A 3D grid in 100 points per side => 100° points
Similar grid in 3N space => 100N points

Computational costs (CPU & memory)
scales ~exp(N)



Just electrons and nuclei?
Exponential COmp/eXIl‘y

HW(. 1y, Ty) = EWGL,e0ry) 2

Solving in a computer:
e.g. discretising space

A 3D grid in 100 points per side => 100° points
Similar grid in 3N space => 100N points

Computational costs (CPU & memory)
scales ~exp(N)

Walter Kohn, in Nobel Lecture 1998,




First-principles calculations to simulate
the behaviour of matter

» Fundamental laws of physics

» Set of “accepted” approximations

to solve the corresponding equations on a computer
* No empirical input

PREDICTIVE
POWER

(as opposed to empirical atomistic simulations)



Problem faced: dynamics of electrons & nuclei



Adiabatic decoupling
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Quantum mechanics

Many electron problem:
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F =m a, evolution in
(discretised) time:



Quantum mechanics for many patrticles

Schroedinger’s equation

HY(7,,r,,....1y) = EY(1;,1,),...,1)

IS exactly solvable for
- Two patrticles (analytically)
- Very few particles (numerically)
The number of electrons and nuclei
in a pebble is ~10 43
=> APPROXIMATIONS



Many-electron problem
Old and extremely hard problem!

Different approaches

« Quantum Chemistry (Hartree-Fock, ClI...)
« Quantum Monte Carlo

- Perturbation theory (propagators)

- Density Functional Theory (DFT)

Very efficient and general

BUT implementations are approximate
and hard to improve
(no systematic improvement)

(... actually running out of ideas ...)



Many-electron problem

Lots of physics behind

first-principles methods

(90 years of quentum many-
particle physics)

DFT
best compromise
efficiency/accuracy

From laptops to huge
supercomputers (10° cores)

NUMBER OF ATOMS
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10 000
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M. Head-Gordon and E. Artacho



Many-electron problem
Density-Functional Theory

1. min E[W({7})] — min E[p(7)]

2. As if non-interacting electrons in an effective
(self-consistent) potential
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Hohenberg - Kohn
W{r}) —=n(r)

For our many-electron problem H =T + V., + E Vo (7))

=1

Eln(i)] = [ &7V, (Fn(F)+ Fln(F)]  =zEg

ext

Elng(r)l=Es  prosrem:
Functional unknown!



Kohn - Sham

Independent particles in an effective potential

They rewrote the functional as:

E[pl=T,[pl+ [ d’Fp(PIV,,(F)+ 1 ®(F)]+E  [p]

Kinetic energy for system Hartree potential
with no e-e Iinteractions

The rest:
Equivalent to independent exchange
particles under the potential correlation

Vv (F)s @) OLelP]

.
)= Ve 50(7)




~ OFE [n]
Exc & ch Ve = on (r)

Local Density Approximation (LDA)

— (function parameterised for the homogeneous
‘/xc [n ] — ‘/xc (n (r) electron liquid as obtained from QMC)

Generalised Gradient Approximation (GGA)
Veeln] =V, (n(r),Vn(r))

(new terms parameterised for heterogeneous
electron systems (atoms) as obtained from QC)



E _ OF [n]
XC & ch ‘/xc 5’1 (r)

Local Density Approximation (LDA)

In't fth
EXLCDA[I’Z] = fd3l' n(r) ch(n) elzveerglczgnsitf/
1/2
3(3
E"™[n) = - [ &’r nx)*”
T

Exact result for the homogeneous electron liquid (from solving HF equations)
Dirac expressed it like this (Slater)



Independent particles

A 1 R
h = —5V2+V(r)

i, (7) = €4, (F)

y, (P

p(r) = E

Tl

CAREFUL



Density Functionals

LDA (PZ)
GGAs: - Chemistry: BLYP, ...

- Physics: PBE, RPBE, WC
MetaGGAs (kinetic energy density)

Hybrids: exchange: 756% GGA + 256% HF
(not strictly DFT, non-local potential: costly)

B3LYP, PBEO, efc



Self-consistency

PROBLEM: The potential (input)
depends on the density (output)

I,' p p’.‘l!



Practical
Implementations



Solving: 1. Basis set
wn(?‘) - @n () Expand in terms of a finite ¢“ (F)

~ set of basis functions
unknown

Wy (F)=e 3 (F)—S e ko, () =, .8, (7)

;K'u .f¢:(?y;¢“ (F)d‘P Sm -I¢:(’:»g (f)d 3?

Yhc. =8N 8,.c,




Basis set: Atomic orbitals

- —-—— Pree atom
This work

y(r)

SIESTA: Strictly localized
(zero beyond cut-off radius)




ADVANTAGES OF ATOMIC ORBITALS:

* Very efficient in terms of number of orbitals per
electron (solution is close to the atomic one)

« Chemical information (charge population, etc) can be

easily extracted. Very well suited to describe
localization.

* No need for periodicity
« Vacuum does not have any cost



DISADVANTAGES OF ATOMIC ORBITALS:

« Lack of systematics in the convergence. How to
improve the basis in terms of number of orbitals and
their shape??

* They are biased, since they are optimal for an atomic
problem. Basis set superposition error

* Orbitals move with atoms, which brings extra terms
(cumbersome to calculate) in the forces

« Calculation of the Hamiltonian matrix elements is
quite complicated and expensive



Kohn-Sham eqns in a Plane Wave Basis (1)

Bloch's Th — e - ui(r). periodic = expanded in
ZS ir? 1Ste§§m- ¢i E(I‘) =g 'ui (I‘) reciprocal lattice vectors {G}
‘ (Fourier Transform)

Uniform convergence
with E_, !

Kohn-Sham equations

- 9
C.
(% s Ny

47 n(G)
Q. |G|

Vg =

V,, easy to calculate in reciprocal space (we need twice the number of

Q_ = unit cell volume PWs to describe n(r) than ¢ (r))




Kohn-Sham eqns in a Plane Wave Basis (2)

(‘)' |G+l_(|_') (?z. T e
Y/

V... Structure factor +
Atomic Pseudopotentials




ADVANTAGES OF PWs:

« Systematic basis set: G, (or E_ ;= |G, [%/2)
determines the quality of the calculation

* |tis unbiased: no assumption on the system under
study, and treats all space equally

* The calculation is variational, and the potentials can
also be expressed in terms of plane waves (keeping
the variational properties)

« Expressions of H and Hy are simple and very fast to
compute

* They are orthogonal, and Hellmann-Feynman
theorem applies to them (even if the calculation is not
converged in terms of the number of PWSs)



DISADVANTAGES OF PWs:

 The number of PWs per electron is very large
(typically 100xN). Larger for more compact orbitals

 Vacuum is as costly as matter!

« Compact orbitals (transition metals) are very
expensive, because they require larger cutoffs

(Note that UltraSoft Pseudopotentials remove this
problem to a large extent).

* Localization ideas are not easily implemented in a
PW basis.



Pseudopotential is a semilocal operator

(different for each angular component of the wfn)

mid bond
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3s all-electron ; full potential
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radius (bohr)




K-point sampling
Electronic quantum states in a periodic solid labelled by:

 Band index

» k-vector: vector in reciprocal space within the first Brillouin zone
(Wigner-Seitz cell in reciprocal space)

« Other symmetries (spin, point-group representation...)

p(#) = Sy, (AF = [d'k

S .f'

Approximated by sums
over selected k-points
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Construct Vign given atomic numbers and
positions of ions o
I- Pick a cutoff for the plane-wave basis set {ei{k +8)-r} I

v
r_Pick a trial density n(r) l

v
I Calculate Vi (n) and Vxc (n) I
¥
h2y2

Solve HY = [- 5+ ViontVH +ch] V=&Y
by diagonalization of Hk+6, k+6’

v A

[aléulote new n (r )—]

IS SOLUTION SELF-CONSISTENT 2

YES NO Generate New n

. ] n‘--‘.nln



