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Why atomic orbitals?

• “Atoms” are a very good first approximation.

• The size of the basis is relatively small.

• Most of the language of the chemical bond is 
based on atomic orbitals.
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the Bloch-state expansion coefficients cµi(k):

ψi (k, r) =
∑

µ′

eikRµ′φµ′(r)cµ′i (k) (43)

where the sum in µ′ extends to all basis orbitals in space, i labels the different bands, cµ′i = cµi

if µ′ ≡ µ and ψi (k, r) is normalized in the unit cell.
The electron density is then

ρ(r) =
∑

i

∫

BZ

ni(k)|ψi (k, r)|2 dk =
∑

µ′ν ′

ρµ′ν ′φ∗
ν ′(r)φµ′(r) (44)

where the sum is again over all basis orbitals in space, and the density matrix

ρµν =
∑

i

∫

BZ

cµi(k)ni(k)ciν(k)eik(Rν−Rµ) dk (45)

is real (for real φµ) and periodic, i.e. ρµν = ρµ′ν ′ if (ν, µ) ≡ (ν ′, µ′) (with ‘≡’ meaning again
‘equivalent by translation’). Thus, to calculate the density at a grid point of the unit cell, we
simply find the sum (44) over all the pairs of orbitals φµ,φν in the supercell that are nonzero
at that point.

In practice, the integral in (45) is performed in a finite, uniform grid of the BZ. The fineness
of this grid is controlled by a k-grid cutoff lcut , a real-space radius which plays a role equivalent
to the plane-wave cutoff of the real-space grid [43]. The origin of the k-grid may be displaced
from k = 0 in order to decrease the number of inequivalent k-points [44].

If the unit cell is large enough to allow a %-point-only calculation, the multiplication by
phase factors is skipped and a single real-matrix eigenvalue problem is solved (in this case,
the real matrix elements are accumulated directly in the first stage, if multiple overlaps occur).
In this way, no complex arithmetic penalty occurs, and the differences between %-point and
k-sampling are limited to a very small section of the code, while all the two-centre and grid
integrals always use the same real-arithmetic code.

9. Total energy

The Kohn–Sham [14] total energy can be written as a sum of a band-structure (BS) energy
plus some correction terms, sometimes called ‘double-count’ corrections. The BS term is the
sum of the energies of the occupied states ψi :

EBS =
∑

i

ni⟨ψi |Ĥ |ψi⟩ =
∑

µν

Hµνρνµ = Tr(Hρ) (46)

where spin and k-sampling notations are omitted here for simplicity. At convergence, theψi are
simply the eigenvectors of the Hamiltonian, but it is important to realize that the Kohn–Sham
functional is also perfectly well defined outside this so-called ‘Born–Oppenheimer surface’,
i.e. it is defined for any set of orthonormal ψi . The correction terms are simple functionals of
the electron density, which can be obtained from equation (35), and the atomic positions. The
Kohn–Sham total energy can then be written as

EKS =
∑

µν

Hµνρνµ − 1
2

∫

V H(r)ρ(r) d3r +
∫

(ϵxc(r) − V xc(r))ρ(r) d3r +
∑

I<J

ZIZJ

RIJ

(47)

where I, J are atomic indices, RIJ ≡ |RJ − RI |, ZI , ZJ are the valence ion pseudoatom
charges and ϵxc(r)ρ(r) is the exchange–correlation energy density. In order to avoid the long-
range interactions of the last term, we construct from the local pseudopotential V local

I , which
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Kinetic matrix elements T (R) ≡ ⟨ψ∗
1 | − 1

2∇2|ψ2⟩ can be obtained in exactly the same
way, except for an extra factor of k2 in equation (28):

Tl1m,l2m2,l(R) = 4π il1−l2−l

∫ ∞

0

1
2k4 dk jl(kR)i−l1ψ∗

1,l1m1
(k)il2ψ2,l2m2(k). (31)

Since we frequently use basis orbitals with a kink [7], we need rather fine radial grids to obtain
accurate kinetic matrix elements, and we typically use grid cutoffs of more than 2000 Ryd for
this purpose. Once obtained, the fine grid does not penalize the execution time, because the
interpolation effort is independent of the number of grid points. It also affects very marginally
the storage requirements, because of the one-dimensional character of the tables. However,
even though it needs to be performed only once, the calculation of the radial integrals (24), (28),
and (31) is not negligible if performed unwisely. We have developed a special fast radial Fourier
transform for this purpose, as explained in appendix B.

Dipole matrix elements, such as ⟨ψ1|x|ψ2⟩, can also be obtained easily by defining a new
function χ1(r) ≡ xψ1(r), expanding it using (21) and computing ⟨χ1|ψ2⟩ as explained above
(with the precaution of using lmax + 1 instead of lmax).

6. Grid integrals

The matrix elements of the last three terms of equation (16) involve potentials which are
calculated on a real-space grid. The fineness of this grid is controlled by a ‘grid cutoff’
Ecut : the maximum kinetic energy of the plane waves that can be represented in the grid
without aliasing12. The short-range screened pseudopotentials V NA

I (r) in (16) are tabulated
as a function of the distance to atoms I and easily interpolated at any desired grid point. The
last two terms require the calculation of the electron density on the grid. Let ψi (r) be the
Hamiltonian eigenstates, expanded in the atomic basis set

ψi (r) =
∑

µ

φµ(r)cµi, (32)

where cµi = ⟨φ̃µ|ψi⟩ and φ̃µ is the dual orbital of φµ: ⟨φ̃µ|φν⟩ = δµν . We use the compact
index notation µ ≡ {I lmn} for the basis orbitals, equation (8). The electron density is then

ρ(r) =
∑

i

ni |ψi (r)|2 (33)

where ni is the occupation of state ψi . If we substitute (32) into (33) and define a density
matrix

ρµν =
∑

i

cµiniciν, (34)

where ciν ≡ c∗
νi , the electron density can be rewritten as

ρ(r) =
∑

µν

ρµνφ
∗
ν (r)φµ(r). (35)

We use the notation φ∗
µ for generality, despite our use of real basis orbitals in practice. Then, to

calculate the density at a given grid point, we first find all the atomic basis orbitals, equation (8),
at that point, interpolating the radial part from numerical tables, and then we use (35) to calculate
the density. Notice that only a small number of basis orbitals are nonzero at a given grid point,
so that the calculation of the density can be performed in O(N) operations, once ρµν is known.

12 Notice that our grid cutoff to represent the density is not directly comparable to the energy cutoff in the context
of plane-wave codes, which usually refers to the wavefunctions. Strictly speaking, the density requires a value four
times larger.
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Figure 5. (a) Convergence of the total energy and pressure in bulk silicon as a function of the
energy cutoff Ecut of the real-space integration mesh. Circles and continuous line: using a grid-cell
sampling of eight refinement points per original grid point. The refinement points are used only in
the final calculation, not during the selfconsistency iteration (see text). Triangles: two refinement
points per original grid point. White circles: no grid-cell sampling. (b) Bond length and angle of
the water molecule as a function of Ecut .

where α, β are spin indices, with up or down values. The coefficients cα
µi are obtained by

solving the generalized eigenvalue problem
∑

νβ

(H αβ
µν − EiSµνδ

αβ)c
β
νi = 0 (39)

where H αβ
µν , like ραβ

µν , is a (2N × 2N ) matrix, with N the number of basis functions:

H αβ
µν = ⟨φµ|T̂ + V̂ KB + V NA(r) + δV H(r) + V

αβ
XC(r)|φν⟩. (40)

This is in contrast to the collinear spin case, in which the Hamiltonian and density matrices can
be factorized into two N × N matrices, one for each spin direction. To calculate V

αβ
XC(r) we

first diagonalize the 2 × 2 matrix ραβ(r) at every point, in order to find the up and down spin
densities ρ↑(r), ρ↓(r) in the direction of the local spin vector. We then find V

↑
XC(r), V

↓
XC(r)

in that direction, with the usual local spin density functional [15], and we rotate V
αβ
XC(r) back

to the original direction. Thus, the grid operations are still basically the same, except that they
need now to be repeated three times, for the ↑↑, ↓↓ and ↑↓ components. Notice that ραβ(r)

and V
αβ
XC(r) are locally Hermitian, while H αβ

µν and ραβ
µν are globally Hermitian (H βα

νµ = H αβ∗
µν ),

so their ↓↑ components can be obtained from the ↑↓ ones.

8. Brillouin zone sampling

Integration of all magnitudes over the Brillouin zone (BZ) is essential for small and moderately
large unit cells, especially of metals. Although SIESTA is designed for large unit cells, in
practice it is very useful, especially for comparisons and checks, to be able to also perform
calculations efficiently on smaller systems without using expensive superlattices. On the other
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Sµν = ⟨φµ|φν⟩

Density matrix

Generalized
eigenvalue problem
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the Bloch-state expansion coefficients cµi(k):

ψi (k, r) =
∑

µ′

eikRµ′φµ′(r)cµ′i (k) (43)

where the sum in µ′ extends to all basis orbitals in space, i labels the different bands, cµ′i = cµi

if µ′ ≡ µ and ψi (k, r) is normalized in the unit cell.
The electron density is then

ρ(r) =
∑

i

∫

BZ

ni(k)|ψi (k, r)|2 dk =
∑

µ′ν ′
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ν ′(r)φµ′(r) (44)
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∑

i

∫

BZ

cµi(k)ni(k)ciν(k)eik(Rν−Rµ) dk (45)

is real (for real φµ) and periodic, i.e. ρµν = ρµ′ν ′ if (ν, µ) ≡ (ν ′, µ′) (with ‘≡’ meaning again
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9. Total energy

The Kohn–Sham [14] total energy can be written as a sum of a band-structure (BS) energy
plus some correction terms, sometimes called ‘double-count’ corrections. The BS term is the
sum of the energies of the occupied states ψi :

EBS =
∑

i

ni⟨ψi |Ĥ |ψi⟩ =
∑

µν

Hµνρνµ = Tr(Hρ) (46)

where spin and k-sampling notations are omitted here for simplicity. At convergence, theψi are
simply the eigenvectors of the Hamiltonian, but it is important to realize that the Kohn–Sham
functional is also perfectly well defined outside this so-called ‘Born–Oppenheimer surface’,
i.e. it is defined for any set of orthonormal ψi . The correction terms are simple functionals of
the electron density, which can be obtained from equation (35), and the atomic positions. The
Kohn–Sham total energy can then be written as

EKS =
∑

µν

Hµνρνµ − 1
2

∫

V H(r)ρ(r) d3r +
∫

(ϵxc(r) − V xc(r))ρ(r) d3r +
∑

I<J

ZIZJ

RIJ

(47)

where I, J are atomic indices, RIJ ≡ |RJ − RI |, ZI , ZJ are the valence ion pseudoatom
charges and ϵxc(r)ρ(r) is the exchange–correlation energy density. In order to avoid the long-
range interactions of the last term, we construct from the local pseudopotential V local

I , which

N =
�

µ⇥

Sµ⇥�⇥µ = Tr(S�)
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Band structure of an ionic solid:                        

The case of MgO 

Objectives 

- Compute and analyze the band structure of an ionic solid 



%block kgrid_Monkhorst_Pack
  6  0  0  0.5
  0  6  0  0.5
  0  0  6  0.5
%endblock kgrid_Monkhorst_Pack
...
MeshCutoff              200 Ry
...
COOP.write T        # NOTE

-rw-r-----  1 ag  ag  397564 Jun 10 17:59 MgO.HSX
-rw-r-----  1 ag  ag  358248 Jun 10 17:59 MgO.fullBZ.WFSX

New H,S, and wavefunction files produced



MgO              SystemLabel
DOS              Keyword
PDOS_Mg     Curve Label
Mg          Orbital spec
PDOS_O         ...
O
PDOS_O_2s   Curve Label
O_2s        Orbital spec
PDOS_O_2p      ...
O_2p
PDOS_Mg_3s
Mg_3s

Input file for (P)DOS processing by mprop

mprop -m Min_Energy -M Max_Energy  input_label

mprop -m -26.0 -M 15.0  pdos

pdos.mpr



-rw-r-----  1 ag  ag  10624 Jun 11 23:00 MgO.ados
-rw-r-----  1 ag  ag   6840 Jun 11 23:00 pdos.PDOS_Mg.pdos
-rw-r-----  1 ag  ag   6840 Jun 11 23:00 pdos.PDOS_Mg_3s.pdos
-rw-r-----  1 ag  ag   6840 Jun 11 23:00 pdos.PDOS_O.pdos
-rw-r-----  1 ag  ag   6840 Jun 11 23:00 pdos.PDOS_O_2p.pdos
-rw-r-----  1 ag  ag   6840 Jun 11 23:00 pdos.PDOS_O_2s.pdos

Total DOS (in specified range):  SystemLabel.ados
Projected DOS:  InputLabel.CurveLabel.pdos
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Density of states projected on orbital µ:
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Crystal Orbital Overlap Population (COOP)
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Kinetic matrix elements T (R) ≡ ⟨ψ∗
1 | − 1

2∇2|ψ2⟩ can be obtained in exactly the same
way, except for an extra factor of k2 in equation (28):

Tl1m,l2m2,l(R) = 4π il1−l2−l

∫ ∞

0

1
2k4 dk jl(kR)i−l1ψ∗

1,l1m1
(k)il2ψ2,l2m2(k). (31)

Since we frequently use basis orbitals with a kink [7], we need rather fine radial grids to obtain
accurate kinetic matrix elements, and we typically use grid cutoffs of more than 2000 Ryd for
this purpose. Once obtained, the fine grid does not penalize the execution time, because the
interpolation effort is independent of the number of grid points. It also affects very marginally
the storage requirements, because of the one-dimensional character of the tables. However,
even though it needs to be performed only once, the calculation of the radial integrals (24), (28),
and (31) is not negligible if performed unwisely. We have developed a special fast radial Fourier
transform for this purpose, as explained in appendix B.

Dipole matrix elements, such as ⟨ψ1|x|ψ2⟩, can also be obtained easily by defining a new
function χ1(r) ≡ xψ1(r), expanding it using (21) and computing ⟨χ1|ψ2⟩ as explained above
(with the precaution of using lmax + 1 instead of lmax).

6. Grid integrals

The matrix elements of the last three terms of equation (16) involve potentials which are
calculated on a real-space grid. The fineness of this grid is controlled by a ‘grid cutoff’
Ecut : the maximum kinetic energy of the plane waves that can be represented in the grid
without aliasing12. The short-range screened pseudopotentials V NA

I (r) in (16) are tabulated
as a function of the distance to atoms I and easily interpolated at any desired grid point. The
last two terms require the calculation of the electron density on the grid. Let ψi (r) be the
Hamiltonian eigenstates, expanded in the atomic basis set

ψi (r) =
∑

µ

φµ(r)cµi, (32)

where cµi = ⟨φ̃µ|ψi⟩ and φ̃µ is the dual orbital of φµ: ⟨φ̃µ|φν⟩ = δµν . We use the compact
index notation µ ≡ {I lmn} for the basis orbitals, equation (8). The electron density is then

ρ(r) =
∑

i

ni |ψi (r)|2 (33)

where ni is the occupation of state ψi . If we substitute (32) into (33) and define a density
matrix

ρµν =
∑

i

cµiniciν, (34)

where ciν ≡ c∗
νi , the electron density can be rewritten as

ρ(r) =
∑

µν

ρµνφ
∗
ν (r)φµ(r). (35)

We use the notation φ∗
µ for generality, despite our use of real basis orbitals in practice. Then, to

calculate the density at a given grid point, we first find all the atomic basis orbitals, equation (8),
at that point, interpolating the radial part from numerical tables, and then we use (35) to calculate
the density. Notice that only a small number of basis orbitals are nonzero at a given grid point,
so that the calculation of the density can be performed in O(N) operations, once ρµν is known.

12 Notice that our grid cutoff to represent the density is not directly comparable to the energy cutoff in the context
of plane-wave codes, which usually refers to the wavefunctions. Strictly speaking, the density requires a value four
times larger.

Crystal Orbital Hamilton Population (COHP)

hµ⇥(⇥) =
�

i

cµici⇥Hµ⇥�(⇥� ⇥i)



A chain of nitrogen atoms

z
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(lattice constant: 2 Ang)
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n_chain
COOP
N2s-N2px
N_2s             Curve Label, orb1 spec,
1.95 2.05        distance range, orb2 spec.
N_2px
N2px-N2px
N_2px
1.95 2.05             ....
N_2px
N2s-N2pz
N_2s
1.95 2.05             ....
N_2pz
N2s-N2s
N_2s
1.95 2.05
N_2s
N2pz-N2pz
N_2pz
1.95 2.05
N_2pz

n_coo.mpr

Distance ranges select nearest neighbors



-rw-r-----  1 ag  ag  6840 Jun 12 00:10 n_coo.N2px-N2px.coop
-rw-r-----  1 ag  ag  6840 Jun 12 00:10 n_coo.N2pz-N2pz.coop
-rw-r-----  1 ag  ag  6840 Jun 12 00:10 n_coo.N2s-N2px.coop
-rw-r-----  1 ag  ag  6840 Jun 12 00:10 n_coo.N2s-N2pz.coop
-rw-r-----  1 ag  ag  6840 Jun 12 00:10 n_coo.N2s-N2s.coop

mprop n_coo

COOP file:  InputLabel.CurveLabel.coop
COHP file:  InputLabel.CurveLabel.cohp
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* MPROP PROGRAM
  Miquel Llunell, Universitat de Barcelona, 2005
  Alberto Garcia, ICMAB-CSIC, 2007

    MPROP calculates both DOS projections and COOP curves
    using output files obtained with SIESTA. The atomic orbital (AO)
    sets are defined in an input file (MLabel.mpr).
  
 Usage: mprop [ options ] MPROP_FILE_BASENAME
 Options:
            -h:  print manual                    
            -d:  debug                    
            -l:  print summary of energy information         
    -s SMEAR  :  set value of smearing parameter (default 0.5 eV)
    -m Min_e  :  set lower bound of energy range                    
    -M Max_e  :  set upper bound of energy range                    

mprop lives in Util/COOP in the Siesta distribution 

mprop -h     Built-in help



* .mpr FILE STRUCTURE
         SLabel                   # Name of the siesta output files
         DOS/COOP                # Define the curve type to be calculated
    /-[ If DOS selected; as many blocks as projections wanted ]
    |    projection_name         # DOS projection name
    \-   Subset of AO (*)        # Subset of orbitals included
    /-[ If COOP selected; as many blocks as projections wanted ]
    |    curve_name              # COOP curve name
    |    Subset I of AO (*)      # Reference atoms or orbitals
    |    d1 d2                   # Distance range
    \-   Subset II of AO (*)     # Neighbour atoms or orbitals
     (*) See below how to define subsets of AO
     A final line with leading chars  ----  can signal the end of the input



* SUBSET OF AO USING ATOM_SHELL NOTATION
    List of atoms and shell groups of AO
    General notation: ATOM_SHELL
     > ATOM:  Atomic symbol refers to all the atoms of that type
              Integer number refers to the N-th atom in unit cell
     > SHELL: Integer1+Letter+Integer2
               > Integer1 refers to the n quantum number
               > Letter   refers to the l quantum number (s,p,d,f,g,h)
               > Integer2 refers to a single AO into the n-l shell
                   Alternatively, alphanumerical strings can be used
                     p-shells   1  y    d-shells   1  xy   4  xz
                                2  z               2  yz   5  x2-y2
                                3  x               3  z2
    Particular cases:
     > Just ATOM is indicated: all the AO of the atom will be included
     > No value for Integer2:  all the AO of the shell will be included
    Example: Ca_3p Al 4_4d3 5 O_2py



• mprop can be used off-line to analyze as many 
curves and energy ranges as needed.

• It can replace the PDOS functionality within 
Siesta.

• It has a flexible orbital specification syntax.



Useful reference with examples of the use
of COOP and COHP curves


