Analysis tools for electronic structure and bonding properties

Alberto García

Institut de Ciència de Materials de Barcelona (CSIC)

Why atomic orbitals?

- "Atoms" are a very good first approximation.
- The size of the basis is relatively small.
- Most of the language of the chemical bond is based on atomic orbitals.

$$\psi_i(\mathbf{r}) = \sum_{\mu} \phi_{\mu}(\mathbf{r}) c_{\mu i},$$

$$\sum_{\alpha} (H^{\alpha\beta}_{\mu\nu} - E_i S_{\mu\nu} \delta^{\alpha\beta}) c^{\beta}_{\nu i} = 0$$

Generalized eigenvalue problem

$$H^{\alpha\beta}_{\mu\nu} = \langle \phi_{\mu} | \hat{T} + \hat{V}^{KB} + V^{NA}(\mathbf{r}) + \delta V^{H}(\mathbf{r}) + V^{\alpha\beta}_{XC}(\mathbf{r}) | \phi_{\nu} \rangle$$

$$S_{\mu\nu} = \langle \phi_{\mu} | \phi_{\nu} \rangle$$

$$\rho(\mathbf{r}) = \sum_{\mu\nu} \rho_{\mu\nu} \phi_{\nu}^*(\mathbf{r}) \phi_{\mu}(\mathbf{r})$$

$$E^{BS} = \sum_{i} n_{i} \langle \psi_{i} | \hat{H} | \psi_{i} \rangle = \sum_{\mu\nu} H_{\mu\nu} \rho_{\nu\mu} = \text{Tr}(H\rho)$$

$$\rho_{\mu\nu} = \sum_{i} c_{\mu i} n_i c_{i\nu}$$
 Density matrix

$$E^{BS} = \sum_{i} n_{i} \langle \psi_{i} | \hat{H} | \psi_{i} \rangle = \sum_{\mu\nu} H_{\mu\nu} \rho_{\nu\mu} = \text{Tr}(H\rho)$$

$$N = \sum_{\mu\nu} S_{\mu\nu} \rho_{\nu\mu} = \text{Tr}(S\rho)$$

$$\rho_{\mu\nu} = \sum_{i} c_{\mu i} n_i c_{i\nu}$$

$$\rho_{\mu\nu} = \sum_{i} c_{\mu i} n_i c_{i\nu} = \int_0^{\epsilon_F} d\epsilon \sum_{i} c_{\mu i} c_{i\nu} \delta(\epsilon - \epsilon_i)$$

$$N = \int_0^{\epsilon_F} d\epsilon \sum_i \sum_{\mu} \sum_{\nu} c_{\mu i} c_{i\nu} S_{\mu\nu} \delta(\epsilon - \epsilon_i)$$

$$N = \int_0^{\epsilon_F} d\epsilon \sum_i \sum_{\mu} \sum_{\nu} c_{\mu i} c_{i\nu} S_{\mu\nu} \delta(\epsilon - \epsilon_i)$$

Density of states:

$$DOS(\epsilon) = g(\epsilon) = \sum_{i} \sum_{\mu} \sum_{\nu} c_{\mu i} c_{i\nu} S_{\mu\nu} \delta(\epsilon - \epsilon_i)$$

Density of states projected on orbital µ:

$$g_{\mu}(\epsilon) = \sum_{i} \sum_{\nu} c_{\mu i} c_{i\nu} S_{\mu\nu} \delta(\epsilon - \epsilon_{i})$$

Band structure of an ionic solid: The case of MgO

New H,S, and wavefunction files produced

```
-rw-r---- 1 ag ag 397564 Jun 10 17:59 MgO.HSX
-rw-r---- 1 ag ag 358248 Jun 10 17:59 MgO.fullBZ.WFSX
```

Input file for (P)DOS processing by mprop

```
SystemLabel
MgO
DOS
               Keyword
PDOS Mg Curve Label
   Orbital spec
Mg
PDOS O
0
                                pdos.mpr
PDOS 0 2s Curve Label
O 2s Orbital spec
PDOS O 2p
0 2p
PDOS Mg 3s
Mg 3s
```

```
mprop -m Min_Energy -M Max_Energy input_label
mprop -m -26.0 -M 15.0 pdos
```

```
10624 Jun 11 23:00 MgO.ados
-rw-r---- 1 ag
                ag
                     6840 Jun 11 23:00 pdos.PDOS Mg.pdos
-rw-r---- 1 ag
                ag
                     6840 Jun 11 23:00 pdos.PDOS Mg 3s.pdos
-rw-r--- 1 ag
                ag
                     6840 Jun 11 23:00 pdos.PDOS O.pdos
-rw-r--- 1 ag
                ag
-rw-r--- 1 ag
                     6840 Jun 11 23:00 pdos.PDOS O 2p.pdos
                ag
                     6840 Jun 11 23:00 pdos.PDOS O 2s.pdos
-rw-r--- 1 ag
                ag
```

Total DOS (in specified range): SystemLabel.ados Projected DOS: InputLabel.CurveLabel.pdos

Density of states projected on orbital µ:

$$g_{\mu}(\epsilon) = \sum_{i} \sum_{\nu} c_{\mu i} c_{i\nu} S_{\mu\nu} \delta(\epsilon - \epsilon_{i})$$

Crystal Orbital Overlap Population (COOP)

$$g_{\mu\nu}(\epsilon) = \sum_{i} c_{\mu i} c_{i\nu} S_{\mu\nu} \delta(\epsilon - \epsilon_i)$$

Crystal Orbital Hamilton Population (COHP)

$$h_{\mu\nu}(\epsilon) = \sum_{i} c_{\mu i} c_{i\nu} H_{\mu\nu} \delta(\epsilon - \epsilon_i)$$

$$\psi_i(\boldsymbol{r}) = \sum_{\mu} \phi_{\mu}(\boldsymbol{r}) c_{\mu i},$$

A chain of nitrogen atoms

(lattice constant: 2 Ang)


```
n_chain
COOP
N2s-N2px
                 Curve Label, orb1 spec,
N 2s
1.95 2.05
                 distance range, orb2 spec.
N_2px
N2px-N2px
N 2px
1.95 2.05
N_2px
N2s-N2pz
                                                        n_coo.mpr
N 2s
1.95 2.05
N 2pz
N2s-N2s
N 2s
1.95 2.05
N 2s
N2pz-N2pz
N 2pz
1.95 2.05
N_2pz
```

Distance ranges select nearest neighbors

mprop n_coo

```
-rw-r---- 1 ag ag 6840 Jun 12 00:10 n_coo.N2px-N2px.coop

-rw-r---- 1 ag ag 6840 Jun 12 00:10 n_coo.N2pz-N2pz.coop

-rw-r---- 1 ag ag 6840 Jun 12 00:10 n_coo.N2s-N2px.coop

-rw-r---- 1 ag ag 6840 Jun 12 00:10 n_coo.N2s-N2pz.coop

-rw-r---- 1 ag ag 6840 Jun 12 00:10 n_coo.N2s-N2s.coop
```

COOP file: InputLabel.CurveLabel.coop

COHP file: InputLabel.CurveLabel.cohp

mprop lives in Util/COOP in the Siesta distribution

mprop -h Built-in help

```
* MPROP PROGRAM
 Miquel Llunell, Universitat de Barcelona, 2005
 Alberto Garcia, ICMAB-CSIC, 2007
   MPROP calculates both DOS projections and COOP curves
   using output files obtained with SIESTA. The atomic orbital (AO)
   sets are defined in an input file (MLabel.mpr).
Usage: mprop [ options ] MPROP FILE BASENAME
Options:
           -h: print manual
           -d: debug
           -1: print summary of energy information
   -s SMEAR : set value of smearing parameter (default 0.5 eV)
   -m Min e : set lower bound of energy range
   -M Max_e : set upper bound of energy range
```

```
.mpr FILE STRUCTURE
                              # Name of the siesta output files
      SLabel
                             # Define the curve type to be calculated
      DOS/COOP
  /-[ If DOS selected; as many blocks as projections wanted ]
      projection name # DOS projection name
    Subset of AO (*) # Subset of orbitals included
  /-[ If COOP selected; as many blocks as projections wanted ]
                      # COOP curve name
      curve name
      Subset I of AO (*) # Reference atoms or orbitals
                           # Distance range
      d1 d2
      Subset II of AO (*) # Neighbour atoms or orbitals
   (*) See below how to define subsets of AO
  A final line with leading chars --- can signal the end of the input
```

- * SUBSET OF AO USING ATOM_SHELL NOTATION List of atoms and shell groups of AO General notation: ATOM SHELL
 - > ATOM: Atomic symbol refers to all the atoms of that type Integer number refers to the N-th atom in unit cell
 - > SHELL: Integer1+Letter+Integer2
 - > Integer1 refers to the n quantum number
 - > Letter refers to the 1 quantum number (s,p,d,f,g,h)
 - > Integer2 refers to a single AO into the n-l shell

Alternatively, alphanumerical strings can be used

p-shells 1 y d-shells 1 xy 4 xz

2 z 2 yz 5 x2-y2

3 x 3 z2

Particular cases:

- > Just ATOM is indicated: all the AO of the atom will be included
- > No value for Integer2: all the AO of the shell will be included Example: Ca 3p Al 4 4d3 5 O 2py

- mprop can be used off-line to analyze as many curves and energy ranges as needed.
- It can replace the PDOS functionality within Siesta.
- It has a flexible orbital specification syntax.

Useful reference with examples of the use of COOP and COHP curves

