

FUNDAMENTALS The quantum-mechanical many-electron problem and Density Functional Theory

Emilio Artacho

Department of Earth Sciences
University of Cambridge

First-principles calculations

- Fundamental laws of physics
- Set of "accepted" approximations to solve the corresponding equations on a computer
- No empirical input

PREDICTIVE POWER

Artillery

F = m a

Approximations

•Flat Earth

•Constant g

(air friction: phenomenological)

Fundamental laws for the properties of matter at low energies

Atomic scale (chemical bonds etc.)

Yes BUT

Electrons and nuclei

(simple Coulomb interactions)

=> Quantum Mechanics

$$\hat{H} \square \left(\{ \vec{r}_i \} \right) = E \square \left(\{ \vec{r}_i \} \right)$$

Many-particle problem

Schroedinger's equation is exactly solvable for

- Two particles (analytically)
- Very few particles (numerically)

The number of electrons and nuclei in a pebble is ~10

$$\hat{H} \square (\vec{r}_1, \vec{r}_2, ..., \vec{r}_N) = E \square (\vec{r}_1, \vec{r}_2, ..., \vec{r}_N)$$

=> APPROXIMATIONS

Born-Oppenheimer

$$\frac{m_n}{m_e} >> 1$$

Nuclei are much slower than electrons

electronic/nuclear decoupling

$$\hat{H} = \prod_{i} \frac{1}{2} \prod_{i} \frac{1}{2} \prod_{i} \frac{1}{2} \prod_{i} \frac{1}{r_{ij}} \prod_{i,j>i} \frac{Z_{\square}}{r_{i\square}} + \prod_{i,j>i} \frac{Z_{\square}Z_{\square}}{R_{\square\square}}$$

nuclei

$$\hat{H}^{el}_{\{\vec{R}_{\square}\}} = \prod_{i} \frac{1}{2} \prod_{i}^{2} + \prod_{i,j>i} \frac{1}{r_{ij}} + V^{ext}_{\{\vec{R}_{\square}\}}(\{\vec{r}_{i}\})$$

$$\hat{H}^{el}_{\{\vec{R}_{\square}\}} = \prod_{i} \frac{1}{2} \prod_{i}^{2} + \prod_{i,j>i} \frac{1}{r_{ij}} + V^{ext}_{\{\vec{R}_{\square}\}}(\{\vec{r}_{i}\})$$
electrons
$$\hat{H}^{el}_{\{\vec{R}_{\square}\}} \prod_{n,\{\vec{R}_{\square}\}}^{el} (\{\vec{r}_{i}\}) = E^{el}_{n} (\{\vec{R}_{\square}\}) \prod_{n,\{\vec{R}_{\square}\}}^{el} (\{\vec{r}_{i}\})$$

$$\hat{H} = \prod_{\underline{\square}} \frac{1}{2M_{\underline{\square}}} + E_n^{el}(\{\vec{R}_{\underline{\square}}\})$$

Classical =>
$$\vec{F}_{\square} = \frac{\partial}{\partial \vec{R}_{\square}} E_0^{el} (\{\vec{R}_{\square}\})$$

Many-electron problem Old and extremely hard problem!

Different approaches

- Quantum Chemistry (Hartree-Fock, Cl...)
- Quantum Monte Carlo
- Perturbation theory (propagators)
- Density Functional Theory (DFT)

Very efficient and general

BUT implementations are approximate and hard to improve (no systematic improvement)

(... actually running out of ideas ...)

Density-Functional Theory

1.
$$\left[\begin{array}{c} \left\{\vec{r}_i\right\}\right] \left[\begin{array}{c} \left(\vec{r}\right) \end{array}\right]$$
 particle density

2. As if non-interacting electrons in an effective (self-consistent) potential

For our many-electron problem

$$\hat{H} = T + V_{ee} + \prod_{i=1}^{N} V_{ext}(\vec{r}_i)$$

1.
$$E[[](\vec{r})] = [d^3\vec{r} V_{ext}(\vec{r})](\vec{r}) + F[[](\vec{r})] \ge E_{GS}$$
 (depends on nuclear positions) (universal functional)

2.
$$E[\prod_{GS}(\vec{r})] = E_{GS}$$

PROBLEM: Functional unknown!

Kohn - Sham

Independent particles in an effective potential

They rewrote the functional as:

Kinetic energy for system with no e-e interactions

Hartree potential

Equivalent to independent particles under the potential

The rest: exchange correlation

$$V(\vec{r}) = V_{ext}(\vec{r}) + \left[(\vec{r}) + \frac{LE_{xc}[L]}{L(\vec{r})} \right]$$

$$E_{xc}$$
 & V_{xc}

$$V_{xc} = \frac{DE_{xc}[D]}{D(\vec{r})}$$

Local Density Approximation (LDA)

(function parameterised for the homogeneous electron liquid as obtained from QMC)

Generalised Gradient Approximation (GGA)

$$V_{xc}[\Box] \Box V_{xc}(\Box(\vec{r}), \Box\Box(\vec{r}))$$

(new terms parameterised for heterogeneous electron systems (atoms) as obtained from QC)

Independent particles

$$\hat{h} = \prod_{i=1}^{n} \frac{1}{2} \prod_{i=1}^{n} 2 + V(\vec{r})$$

$$\hat{h}_{n}(\vec{r}) = \prod_{n} \prod_{n} (\vec{r})$$

Self-consistency

PROBLEM: The potential (input) depends on the density (output)

Solving: 1. Basis set

Expand in terms of a finite set of known wave-functions $\Box_{\square}(\vec{r})$

$$\hat{h} \square_{n}(\vec{r}) = \square_{n} \square_{n}(\vec{r}) \longrightarrow \square_{n} c_{\square n} \hat{h} \square_{\square}(\vec{r}) = \square_{n} \square_{n} c_{\square n} \square_{\square}(\vec{r})$$

Def
$$h_{\square} = \square_{\square}^*(\vec{r})\hat{h}\square_{\square}(\vec{r})d^3\vec{r}$$
 and $S_{\square} = \square_{\square}^*(\vec{r})\square_{\square}(\vec{r})d^3\vec{r}$

$$HC_n = SC_n$$

Basis set: Atomic orbitals

Strictly localised (zero beyond cut-off radius)

Solving: 2. Boundary conditions

- Isolated object (atom, molecule, cluster):
 open boundary conditions
 (defined at infinity)
- •3D Periodic object (crystal):
 Periodic Boundary Conditions
- Mixed: 1D periodic (chains)
 2D periodic (slabs)

k-point sampling

Electronic quantum states in a periodic solid labelled by:

- Band index
- k-vector: vector in reciprocal space within the first Brillouin zone (Wigner-Seitz cell in reciprocal space)
- Other symmetries (spin, point-group representation...)

$$\Box(\vec{r}) = \prod_{n}^{occ} |\Box_{n}(\vec{r})|^{2} \Box_{\vec{k}\Box B.Z} d^{3}\vec{k}$$

Approximated by sums over selected k points

Some materials' properties

		Ехр.	LAPW	Other PW	PW	DZP
С	a (Å)	3.57	3.54	3.54	3.53	3.54
	B (GPa)	442	470	436	459	453
	E_c (eV)	7.37	10.13	8.96	8.89	8.81
Si	a (Å)	5.43	5.41	5.38	5.38	5.40
	B (GPa)	99	96	94	96	97
	E_c (eV)	4.63	5.28	5.34	5.40	5.31
Na 	a (Å)	4.23	4.05	3.98	3.95	3.98
	B (GPa)	6.9	9.2	8.7	8.7	9.2
	E_c (eV)	1.11	1.44	1.28	1.22	1.22
Cu	a (Å)	3.60	3.52	3.56	-	3.57
	B (GPa)	138	192	172	-	165
	E_c (eV)	3.50	4.29	4.24	-	4.37
Au	a (Å)	4.08	4.05	4.07	4.05	4.07
	B (GPa)	173	198	190	195	188
	E_c (eV)	3.81	-	-	4.36	4.13

Absence of DC conductivity in -DNA

P. J. de Pablo et al. Phys. Rev. Lett. 85, 4992 (2000)

Effect of sequence disorder and vibrations on the electronic structure

=> Band-like conduction is extremely unlikely: DNA is not a wire

Pressing nanotubes for a switch

Pushed them together, relaxed & calculated conduction at the contact: SWITCH

M. Fuhrer et al. Science 288, 494 (2000)

Y.-G. Yoon et al. Phys. Rev. Lett. 86, 688 (2001)

Pyrophyllite, illite & smectite

Structural effects of octahedral cation substitutions

C. I. Sainz-Diaz et al. (American Mineralogist, 2002)

VVE I URFACES

Organic molecules intercalated between layers

M. Craig et al. (Phys. Chem. Miner. 2002)

Recap

- Born-Oppenheimer: electron-nuclear decoupling
- Many-electron -> DFT (LDA, GGA)
- One-particle problem in effective self-consistent potential (iterate)
- Basis set => Solving in two steps:
 - 1. Calculation of matrix elements of H and S
 - 2. Diagonalisation
- Extended crystals: PBC + k sampling