
Some advanced issues
in SIESTA

Alberto García
Institut de Ciencia de Materials de Barcelona

(ICMAB-CSIC)

• Parallelization

• New solvers

• Examples of special options and features

• Analysis tools and other utilities

• Special versions of SIESTA

Parallelization
(with thanks to Georg Huhs, BSC)

Introduction Basics Parallel SIESTA Scaling Computing Resources

Clock rate history

Georg Huhs — Parallelization issues

Introduction Basics Parallel SIESTA Scaling Computing Resources

No clock frequency scaling
) more performance by faster memory, more cache,
parallelism

Parallel structures are scalable

But need proper algorithms and programming

Georg Huhs — Parallelization issues

Introduction Basics Parallel SIESTA Scaling Computing Resources

Types of parallelism

Shared memory

Multithreading

Distributed memory

MPI

Georg Huhs — Parallelization issues

Introduction Basics Parallel SIESTA Scaling Computing Resources

Types of parallelism

Hybrid systems

Multithreading + MPI

Georg Huhs — Parallelization issues

Introduction Basics Parallel SIESTA Scaling Computing Resources

Types of parallelism

Heterogeneous systems

Georg Huhs — Parallelization issues

Introduction Basics Parallel SIESTA Scaling Computing Resources

User’s tasks

Centers provide platform

Code owners provide parallel programs

User has to deal with:

Machine usage: Queueing systems

optimal use of resources

Application configuration

More specialized/optimized code gives better performance
but needs more awareness in its configuration

Georg Huhs — Parallelization issues

Introduction Basics Parallel SIESTA Scaling Computing Resources

Parallelization in SIESTA

(For now) only distributed memory parallelization.

Several options:

k-point parallelism

Distributing orbitals and gridpoints

2-level parallelism in PEXSI solver

Georg Huhs — Parallelization issues

Parallelization in SIESTA

was used, which highlight the difficulty of a proper

description of the dimer, even using fully quantum
mechanical calculations. In conclusion, the QM/MM

implementation performs well in the description of the

water dimer, with errors that reflect the basic limitations of
the MM model used. Our results are similar to those of

previous QM–MM implementations [20, 26, 27].

As a second test, we assess the influence of the MM
region on the QM region by calculating the induced dipole

moment of a QM molecule in a liquid environment of

215 MM water molecules and under periodic boundary
conditions. The dipole of the QM molecule is obtained by a

time average during a 10 ps molecular dynamics simula-
tion at 300 K. We obtain a value of 2.73 D, which sub-

tracting the value for the free molecule yields a dipole

change induced by the MM region of 0.69 D. This value is
close to the experimental one obtained for the difference

between the dipole of a water molecule in the gas phase

and that in ice, i.e., 0.75 D [28].
In summary, our method gives very reasonable results

for systems comprised of both QM and MM water

molecules.

3 Optimization of the parallel execution of grid
operations

In the original SIESTA parallelization, the distribution of the
real-space mesh data among processors was done in a

uniform way. The mesh points were divided in the Y and Z

directions (more precisely, along the second and third lat-
tice vectors) over the processors in a 2-D grid, so that each

processor was assigned a parallelepipedic sub-mesh that

extended along the X (first lattice vector) direction (see
Fig. 2a). A highly unbalanced workload resulted for cases

with a inhomogeneous ionic distribution (for example, for a

cluster centred at the origin, or for a slab perpendicular to

the Z direction). In QM–MM calculations, one typically
has a rather localized QM region immersed in the classical

system, so workload imbalance problems are likely to be

the norm. To exemplify the problem, we use as one of our
test cases a system of liquid water with a total of 7,161

molecules (262 QM and 6,899 MM). The QM molecules

are confined to the central region of a cubic box of 60 Å
side (Fig. 3a) and surrounded by the MM molecules. We

will compare this case with a system of the same size and

number of molecules, but where the QM and MM mole-
cules are uniformly distributed throughout the simulation

cell (Fig. 3b).
The imbalance problems can be visualized using the

PARAVER tool [29], which processes trace data obtained

during the execution of an instrumented version of the code
[30] and displays the information in a convenient way.

Figure 2c shows a computation with eight processors for

the inhomogeneous system of Fig. 3a. The blue, orange,
and red colours represent computing, global communica-

tion, and point-to-point communication events, respec-

tively. Global communications and start-end times of the
four key SIESTA routines described earlier have been

marked. Some problems are immediately obvious from the

trace. First, the computation and waiting times are different
for each processor. This is a symptom that the workload is

unbalanced among the processors. In particular, processors

1, 4, 5, and 8 seem to have been assigned mostly empty
regions of the box, with very little computation in all

routines except poison. Furthermore, the imbalance is

different for every routine, except for rhoofd and vmat,
which show similar behaviour. Second, there are too many

global communications. These all-to-all communications

are trying to make the relevant parts of the distributed data
structures available to those processors that need them, but

in a quite inefficient way. This is clearly seen in routines

Fig. 2 Original parallelization
of SIESTA. a Sketch of the
uniform 2-D real-space domain
decomposition; b Graph
showing the all-to-all (or global)
communications pattern;
c Execution trace of the four
main routines involved in the
real-space grid operations. The
eight horizontal bars represent
eight processes that at a given
instant can be computing (blue)
or communicating (red and
orange). This trace corresponds
to a test case involving a set of
262 water molecules distributed
inhomogeneously in the
simulation box, as shown in
Fig. 3a

Theor Chem Acc

123

rhoofd and vmat, in which pieces of the density matrix
and the Hamiltonian, respectively, are passed around.

Figure 2b represents this state of affairs as a graph of

processes with fully connected nodes. The edges represent
portions of data held by each processor, which are sent to

others. In this case, the data are sent to all other processors,
so that many unnecessary data transfers are carried out in
the network.

Workload imbalance, even if relatively small, can lead

to gross inefficiencies in parallel operation, typically
manifested in a reduced speed-up when the number of

processors is increased, i.e., reduced scalability. The same

is true of the abuse of all-to-all communication patterns. To
correct these inefficiencies, we have developed new

approaches to the problems of mesh distribution and

communication scheduling.

3.1 Balanced mesh distribution

The key to the choice of an adequate mesh distribution

among processors is the use of a weight function that

represents the amount of work associated to each mesh
point. Seen in this light, the uniform distribution used in the

original version is appropriate only if the weight is the

same for all points, as is the case in the poison routine,
which basically performs an FFT on the data on the grid. In

general, though, the amount of calculation in each mesh

point is different and, crucially, depends on the type of
operation to be performed. Therefore, a properly load-

balanced calculation will need not just one, but several

distributions, which will alternate during the execution of
the driver program. Routine cellxc involves a bi-valued

weight function: 1 if the mesh point is touched by any basis

orbital, and 0 otherwise (when there is no charge density to
process). Routines vmat and rhoofd need a weight

function proportional to the square of the number of

orbitals touching the point, since the operations to be
performed involve pairs of orbitals. Only poison has a

flat weight, as described above.

So, SIESTA needs three different distributions for the grid
operations. For a given weight function, each processor is

assigned a parallelepipedic portion of the real-space grid,

determined using a recursive bisection algorithm [31], (see
Fig. 4a), which at each step creates new sub-domains

corresponding to regions of approximately equal compu-

tational cost.

3.2 Efficient communication scheduling

In order to improve the efficiency of the communications,

these are pre-scheduled. The pattern of communication can

be represented as before as a graph (of processes) in which
nodes represent processes and edges communication

between them (Fig. 4b). Rather than using indiscriminate

all-to-all broadcasts, as in Fig. 2b, it pays to consider in
detail the specific communication events really needed to

redistribute the appropriate pieces of the density matrix and

the Hamiltonian among the processors that need them to
complete mesh operations (in routines rhoofd and vmat,
respectively). With the use of these point-to-point com-

munications, the graph is no longer fully connected.
Furthermore, it becomes possible to schedule commu-

nications in such a way that those involving disjoint sets of

processors can take place at the same time. Our scheduling
algorithm uses the dual graph (of communications) pic-

tured to the right in Fig. 4b, in which nodes now represent

communication events and edges the processors involved,
so two nodes are connected by an edge if the same pro-

cessor is needed for the two communication events.

The search for concurrency opportunities in communica-
tion is now equivalent to the problem of colouring the

graph with the minimum number of colours in such a way

Fig. 3 QM–MM simulation
boxes with liquid water at
uniform density. Only the QM
molecules are shown. In a the
QM molecules are located in the
central area, while the MM
molecules are in the
surrounding region. In b the
distribution of QM and MM
molecules is uniform

Theor Chem Acc

123

that nodes (communication events) connected by lines
(processors) do not share the same colour. Communica-

tions (nodes) of the same colour can then take place

simultaneously (see Fig. 4b). Graph colouring is an NP-
complete problem [32], but a heuristic can be used to find

closely optimal colourings. We use the iterative largest-first

algorithm [33], in which at every step or iteration a non-
coloured node is chosen and painted with a different colour

from its adjacent nodes. The selected node is one that has

the greater number of non-coloured adjacent nodes.

4 Showcase for parallelization results

4.1 Execution trace

Figure 4c, obtained for the same inhomogeneous system

as Fig. 2c, shows the reduction in global communications

and the much better balanced workload for all routines
that are achieved using the new parallelization of SIESTA.

Note that these improvements will be observed in general

by all systems, even if they are not intrinsically very
inhomogeneous, due to the operation-dependent workload

distribution.

4.2 Scalability tests

To analyse the improvements on the parallel performance of
SIESTA, we have used the two systems shown in Fig. 3.

While the typical QM–MM calculations have traditionally

used a relatively small QM part, in order to analyse the
scalability improvements, we have considered a moderately

large QM subsystem of 262 water molecules. With this
benchmark, we can employ up to 128 processors while

keeping a reasonable load on each processor. The system

sizes show the potential for QM–MM simulations with
large QM parts, which we aim at performing in the

future. In addition, the tests performed will be relevant

for more general kinds of systems and for fully QM
calculations.

For both cases in Fig. 3 (inhomogeneous and homoge-

neous distributions of QM molecules), we compare the
performances of the old version of SIESTA and of the new

version implementing the parallelization improvements. As

a measure of performance, we use the relative speed-up,
conceptually Sp = T1/Tp, which measures how much faster

the calculation is when using p processors instead of one.

To avoid artefacts stemming from different memory access
patterns,1 we actually use Sp = 8T8/Tp, taking as reference

a calculation with eight processors.

As the focus of these benchmarks is on the scalability
properties of the new parallelization of SIESTA, we do not

take into account any classical atoms in the calculations.

The grid-related operations performed by SIESTA are
called in the driver program from a parent routine dhscf,
and in what follows we use its overall performance as the

approximate figure of merit for the benchmarks, while still
discussing the individual performance of the four worker

routines already introduced. Figure 5 shows the speed-up

curves for the old (upper row) and new (lower row)

Fig. 4 New parallelization of
SIESTA. a Balanced real-space
domain decomposition by using
a recursive bisection algorithm;
b communication scheduling
generated by applying a
colouring algorithm to the graph
of communications. The same
colour means communications
that happen at the same time;
c idem Fig. 2c

1 The large system size implies a large total memory requirement,
which reflects in a slow-down for execution in a small number of
processors due to swapping, cache misses, etc.

Theor Chem Acc

123

versions, for both the homogeneous (left side) and inho-

mogeneous (right side) QM sub-systems.
In all cases, one observes a progressive degradation of

the parallel efficiency (Sp/p) with processor count, but the

performance reduction of the original parallelization is
markedly worse, particularly, as expected, for the inho-

mogeneous case, in which the efficiency drops to 24% (see

Fig. 5c) due to the workload imbalance exemplified in
Fig. 2, compared to a more reasonable 64% for the

homogeneous case (see Fig. 5a). The new parallelization
improves performance significantly, with the efficiency

reaching 52% (see Fig. 5d) and 83% (see Fig. 5b) for the

inhomogeneous and the homogeneous case, respectively.
Before discussing the performance of the individual

routines, it should be noted that the use of three separate

data distributions in the new parallelization scheme intro-
duces extra communication needs for re-distribution of the

data arrays before and after the relevant operations. The

effect of these communications is included in the dhscf
curves for the new parallelization (Fig. 5b, d). For com-

pleteness, we also present in the plots the curves obtained

when the time spent in these communications is subtracted

from the total count for dhscf. These curves show that

these communications are of greater importance for the
inhomogeneous case due to the inherent non-uniformity of

data distribution. The parallel efficiency goes up to 71 and

87% when the extra communications are not counted.
Since there is no meaningful and unambiguous way to

assign the communication overhead to any particular sub-

routine of dhscf, the individual-routine curves in the
bottom plots of Fig. 4 refer to the net speed-up without re-

distribution communications. While this communication
overhead is obviously relevant for a global assessment of

performance, the net speed-up curves are a good measure

of the efficiency gains with respect to the old paralleliza-
tion scheme.

The scalability of the poison routine is the same for

both parallelizations and both test cases, homogeneous and
inhomogeneous, since its uniform data distribution is

intrinsically appropriate and was not modified. This rou-

tine, with an efficiency higher than 77%, exhibits the best
performance in the original parallel version. In the new

parallelization, in contrast, the rest of routines exhibit

better or at least similar performance: the cellxc

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

S
pe

ed
−U

p

Cellxc

(a) (c)

(d)(b)

Rhoofd
Vmat

Poison
Dhscf

64%
Ideal

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

S
pe

ed
−U

p

Processors

Cellxc
Rhoofd

Vmat
Poison

Dhscf−Comm

87%

Dhscf

83%

Ideal

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

Cellxc
Rhoofd

Vmat
Poison
Dhscf

24%

Ideal

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

Processors

Cellxc
Rhoofd

Vmat
Poison

Dhscf−Comm
71%Dhscf

52%

Ideal

Homogeneous Inhomogeneous

Fig. 5 Speed-up and efficiency comparison, with reference to eight
processors, of the original (top row) and new (bottom row) SIESTA
parallelization schemes. Benchmark cases correspond to two water
boxes with homogeneous (left side) and inhomogeneous (right side)
molecular distributions, as shown in Fig. 3. The overall dhscf
speed-up for the new parallelization includes three data re-

distributions (communications) for routine pre-scheduling. For direct
comparison with the original parallelization, the contribution of these
communications is removed from the global speed-up in the curves
marked Dhscf-Comm. All calculations use the PBE GGA exchange-
correlation functional

Theor Chem Acc

123

(Rogeli Grima, J.M. Cela, BSC)

 1 1 1 Mg 1 3 0 0 1 F s 6.620 0 0 0 1
 2 2 1 Mg 1 3 0 0 1 F s 6.620 0 0 0 2
 3 3 2 C 1 2 0 0 1 F s 4.192 0 0 0 3
 4 3 2 C 2 2 1 -1 1 F py 4.870 0 0 0 4
 5 3 2 C 3 2 1 0 1 F pz 4.870 0 0 0 5
 6 3 2 C 4 2 1 1 1 F px 4.870 0 0 0 6
 7 4 2 C 1 2 0 0 1 F s 4.192 0 0 0 7
 8 4 2 C 2 2 1 -1 1 F py 4.870 0 0 0 8
 9 4 2 C 3 2 1 0 1 F pz 4.870 0 0 0 9
 10 4 2 C 4 2 1 1 1 F px 4.870 0 0 0 10

 11 5 3 O 1 2 0 0 1 F s 3.305 0 0 0 11
 12 5 3 O 2 2 1 -1 1 F py 3.937 0 0 0 12
 13 5 3 O 3 2 1 0 1 F pz 3.937 0 0 0 13
 14 5 3 O 4 2 1 1 1 F px 3.937 0 0 0 14
 15 6 3 O 1 2 0 0 1 F s 3.305 0 0 0 15
 16 6 3 O 2 2 1 -1 1 F py 3.937 0 0 0 16
 17 6 3 O 3 2 1 0 1 F pz 3.937 0 0 0 17
 18 6 3 O 4 2 1 1 1 F px 3.937 0 0 0 18
 19 7 3 O 1 2 0 0 1 F s 3.305 0 0 0 19
 20 7 3 O 2 2 1 -1 1 F py 3.937 0 0 0 20

P0

P1

Orbital distribution

Introduction Basics Parallel SIESTA Scaling Computing Resources

Parallelization in SIESTA

Software stack:

Georg Huhs — Parallelization issues

Introduction Basics Parallel SIESTA Scaling Computing Resources

Parallelization in SIESTA

Compile options:

MPI wrappers to compiler

FC=mpif90

Flag activating MPI

FPPFLAGS= -DMPI

eventually also -DBSC_CELLXC and/or -DMPI_TIMING

Parallel linar algebra libraries

BLACS_LIBS = <yourlibs >

SCALAPACK_LIBS = <yourlibs >

LIBS = $(SCALAPACK_LIBS) $(BLACS_LIBS)

MPI_INTERFACE=libmpi_f90.a

MPI_INCLUDE =.

Georg Huhs — Parallelization issues

Massive parallelization:
The PEXSI solver

Diagonalization

H| i >= ✏iS| i >

| i >=
X

µ

cµi |�µ >

⇢̂ =
X

i

fi| i >< i| =
X

iµ⌫

fic
µ
i c

⌫
i |�µ >< �⌫ |

⇢µ⌫ =
P

i fic
µ
i c

⌫
i

N = Tr[⇢̂S] EBS = Tr[⇢̂H]

ScaLaPack O(N3)

Density matrix

⇢̂ = f�(Ĥ � µ)

BSC 2

1. Introduction

PEXSI is the name of a method that uses a pole expansion representation of the fermi operator
[1] to avoid the diagonalization usually needed in DFT codes. This representation would also yield
the critical O(n3) scaling with the system size, but when dealing with sparse matrices, the selected
inversion algorithm [2, 3] reduces the order to O(n2) for 3D systems and even further for systems with
reduced dimensionality. The implementation of this method is also called PEXSI, and PPEXSI is its
parallel version.

Siesta [4, 5] is a DFT code using localized orbitals as base functions, which results in sparse
Hamiltonian and overlap matrices. Thus this software is particularly interesting for spatially sparse
physical problems. Unfortunately the most powerful, reliable, and general eigenvalue solver, and thus
used in Siesta, is provided by ScaLAPACK, which does neither take advantage of the sparsity of the
matrices, nor does it scale well.

Siesta with PEXSI as solver can be a powerful combination because

• due to the better scaling with the system size (weak scaling) very big problems can be solved

• PEXSI has the potential for parallelization on two levels, enabling an efficient use of tens of
thousands of processors (strong scaling)

• data from SCF and MD iterations can be used for following iterations, which makes long running
calculations more efficient

These effects together make new classes of cutting edge physical problems approachable.

2. The PEXSI method

The algorithm’s name “PEXSI” reflects its two main ingredients: Pole EXpansion and Selected
Inversion.

The basic idea is to avoid diagonalization of the Hamiltonian with its unfavorable O(N3) scaling by
computing the density matrix directly from the Fermi operator. An efficient representation of the Fermi
operator is given by the pole expansion presented in [1]. For evaluating a term in this representation, a
matrix constructed from the Hamiltonian and overlap matrices needs to be inverted, which is basically
also an O(N3) operation. But when dealing with sparse matrices, like the ones generated from Siesta,
the selected inversion algorithm [2] reduces this order by calculating only the elements that are really
needed.

For sufficiently big problems PEXSI gives the following weak scaling:
(quasi-)1D: O(N)
(quasi-)2D: O(N3/2)

3D: O(N2)

2.1. Theory

The central element in DFT is the the electron density ρ̂(x) being the diagonal of the density matrix

γ̂(x, x′) =
∞∑

i=1

ψi(x)fβ(ϵi − µ)ψ⋆
i (x

′) (1)

with the orbitals ψi(x) and their occupation given by the Fermi-Dirac function

fβ(ϵi − µ) =
2

1 + eβ(ϵi−µ)
(2)

Copyright c⃝ 2013 Barcelona Supercomputing Center Internal Report

Fermi-Dirac function

Formal solution to the
electronic-structure problem

We just need a computationally convenient
representation of the Fermi-Dirac function

Pole (rational) expansion of the Fermi function

PEXSI FOR SIESTA - PROTOTYPE PHASE 3

Figure 1. Arrangement of the poles encircling the eigenvalue spectrum while avoiding the non-analytic
regions. By courtesy of Chao Yang and Lin Lin.

The chemical potential µ has to yield the correct number of electrons Ne =
∫

ρ(x)dx.

The pole expansion of the Fermi operator is a discretized complex contour integral

fβ(ϵi − µ) ≈ Im
P∑

l=1

ωl

ϵi − (zl + µ)
(3)

The poles zl are the base points and the ωl the corresponding weights of the contour, which is chosen
to encircle the spectrum while excluding the non-analytic regions (figure 1).

This representation needs a relatively small number of poles P , which grows with the inverse
temperature β and the spectrum width ∆E like O(log(β ∆E)).

Based on this expansion one can derive the following expression for the density ρ in the real space
basis of the atomic orbital basis functions φi

ρ̂(x) ≈
∑

ij

φi(x) Im

(
P
∑

l=1

ωl

H − (zl + µ)S

)

︸ ︷︷ ︸

γij

φj(x) (4)

The chemical potential µ is an additional parameter, which has to be set to give the correct number
of electrons

Ne =

∫

ρ(x)dx (5)

For building the inverse (H − (zl + µ)S)−1 = A−1 only selected elements are calculated, using the
method of selected inversion, which is based on a triangular factorization. In case of a symmetric
A, this decomposition can be LDLT . Extracting the first column and row of the matrices, they can
be written as

A =

(

a bT

b Â

)

(A =)LDLT =

(
1
l L̂

)(
α

Â− bbT /α

)(

1 lT

L̂

) (6)

The inversion is based on the recursive scheme

A−1 =

(

α−1 + lTS−1l −lTS−1

−S−1l S−1

)

(7)

Due to the sparsity also the vectors l will be sparse, but with some additional fill-in, depending on the
factorization and preprocessing. Elements lTS−1l corresponding to zero-entries of l will also be zero,
and don’t need to be computed.

Copyright c⃝ 2013 Barcelona Supercomputing Center Internal Report

PEXSI FOR SIESTA - PROTOTYPE PHASE 3

Figure 1. Arrangement of the poles encircling the eigenvalue spectrum while avoiding the non-analytic
regions. By courtesy of Chao Yang and Lin Lin.

The chemical potential µ has to yield the correct number of electrons Ne =
∫

ρ(x)dx.

The pole expansion of the Fermi operator is a discretized complex contour integral

fβ(ϵi − µ) ≈ Im
P∑

l=1

ωl

ϵi − (zl + µ)
(3)

The poles zl are the base points and the ωl the corresponding weights of the contour, which is chosen
to encircle the spectrum while excluding the non-analytic regions (figure 1).

This representation needs a relatively small number of poles P , which grows with the inverse
temperature β and the spectrum width ∆E like O(log(β ∆E)).

Based on this expansion one can derive the following expression for the density ρ in the real space
basis of the atomic orbital basis functions φi

ρ̂(x) ≈
∑

ij

φi(x) Im

(
P
∑

l=1

ωl

H − (zl + µ)S

)

︸ ︷︷ ︸

γij

φj(x) (4)

The chemical potential µ is an additional parameter, which has to be set to give the correct number
of electrons

Ne =

∫

ρ(x)dx (5)

For building the inverse (H − (zl + µ)S)−1 = A−1 only selected elements are calculated, using the
method of selected inversion, which is based on a triangular factorization. In case of a symmetric
A, this decomposition can be LDLT . Extracting the first column and row of the matrices, they can
be written as

A =

(

a bT

b Â

)

(A =)LDLT =

(
1
l L̂

)(
α

Â− bbT /α

)(

1 lT

L̂

) (6)

The inversion is based on the recursive scheme

A−1 =

(

α−1 + lTS−1l −lTS−1

−S−1l S−1

)

(7)

Due to the sparsity also the vectors l will be sparse, but with some additional fill-in, depending on the
factorization and preprocessing. Elements lTS−1l corresponding to zero-entries of l will also be zero,
and don’t need to be computed.

Copyright c⃝ 2013 Barcelona Supercomputing Center Internal Report

PEXSI FOR SIESTA - PROTOTYPE PHASE 3

Figure 1. Arrangement of the poles encircling the eigenvalue spectrum while avoiding the non-analytic
regions. By courtesy of Chao Yang and Lin Lin.

The chemical potential µ has to yield the correct number of electrons Ne =
∫

ρ(x)dx.

The pole expansion of the Fermi operator is a discretized complex contour integral

fβ(ϵi − µ) ≈ Im
P∑

l=1

ωl

ϵi − (zl + µ)
(3)

The poles zl are the base points and the ωl the corresponding weights of the contour, which is chosen
to encircle the spectrum while excluding the non-analytic regions (figure 1).

This representation needs a relatively small number of poles P , which grows with the inverse
temperature β and the spectrum width ∆E like O(log(β ∆E)).

Based on this expansion one can derive the following expression for the density ρ in the real space
basis of the atomic orbital basis functions φi

ρ̂(x) ≈
∑

ij

φi(x) Im

(
P
∑

l=1

ωl

H − (zl + µ)S

)

︸ ︷︷ ︸

γij

φj(x) (4)

The chemical potential µ is an additional parameter, which has to be set to give the correct number
of electrons

Ne =

∫

ρ(x)dx (5)

For building the inverse (H − (zl + µ)S)−1 = A−1 only selected elements are calculated, using the
method of selected inversion, which is based on a triangular factorization. In case of a symmetric
A, this decomposition can be LDLT . Extracting the first column and row of the matrices, they can
be written as

A =

(

a bT

b Â

)

(A =)LDLT =

(
1
l L̂

)(
α

Â− bbT /α

)(

1 lT

L̂

) (6)

The inversion is based on the recursive scheme

A−1 =

(

α−1 + lTS−1l −lTS−1

−S−1l S−1

)

(7)

Due to the sparsity also the vectors l will be sparse, but with some additional fill-in, depending on the
factorization and preprocessing. Elements lTS−1l corresponding to zero-entries of l will also be zero,
and don’t need to be computed.

Copyright c⃝ 2013 Barcelona Supercomputing Center Internal Report

⇢̂ =

BSC 2

1. Introduction

PEXSI is the name of a method that uses a pole expansion representation of the fermi operator
[1] to avoid the diagonalization usually needed in DFT codes. This representation would also yield
the critical O(n3) scaling with the system size, but when dealing with sparse matrices, the selected
inversion algorithm [2, 3] reduces the order to O(n2) for 3D systems and even further for systems with
reduced dimensionality. The implementation of this method is also called PEXSI, and PPEXSI is its
parallel version.

Siesta [4, 5] is a DFT code using localized orbitals as base functions, which results in sparse
Hamiltonian and overlap matrices. Thus this software is particularly interesting for spatially sparse
physical problems. Unfortunately the most powerful, reliable, and general eigenvalue solver, and thus
used in Siesta, is provided by ScaLAPACK, which does neither take advantage of the sparsity of the
matrices, nor does it scale well.

Siesta with PEXSI as solver can be a powerful combination because

• due to the better scaling with the system size (weak scaling) very big problems can be solved

• PEXSI has the potential for parallelization on two levels, enabling an efficient use of tens of
thousands of processors (strong scaling)

• data from SCF and MD iterations can be used for following iterations, which makes long running
calculations more efficient

These effects together make new classes of cutting edge physical problems approachable.

2. The PEXSI method

The algorithm’s name “PEXSI” reflects its two main ingredients: Pole EXpansion and Selected
Inversion.

The basic idea is to avoid diagonalization of the Hamiltonian with its unfavorable O(N3) scaling by
computing the density matrix directly from the Fermi operator. An efficient representation of the Fermi
operator is given by the pole expansion presented in [1]. For evaluating a term in this representation, a
matrix constructed from the Hamiltonian and overlap matrices needs to be inverted, which is basically
also an O(N3) operation. But when dealing with sparse matrices, like the ones generated from Siesta,
the selected inversion algorithm [2] reduces this order by calculating only the elements that are really
needed.

For sufficiently big problems PEXSI gives the following weak scaling:
(quasi-)1D: O(N)
(quasi-)2D: O(N3/2)

3D: O(N2)

2.1. Theory

The central element in DFT is the the electron density ρ̂(x) being the diagonal of the density matrix

γ̂(x, x′) =
∞∑

i=1

ψi(x)fβ(ϵi − µ)ψ⋆
i (x

′) (1)

with the orbitals ψi(x) and their occupation given by the Fermi-Dirac function

fβ(ϵi − µ) =
2

1 + eβ(ϵi−µ)
(2)

Copyright c⃝ 2013 Barcelona Supercomputing Center Internal Report

Fewer terms are needed (typically 40 poles are enough)

PEXSI FOR SIESTA - PROTOTYPE PHASE 3

Figure 1. Arrangement of the poles encircling the eigenvalue spectrum while avoiding the non-analytic
regions. By courtesy of Chao Yang and Lin Lin.

The chemical potential µ has to yield the correct number of electrons Ne =
∫

ρ(x)dx.

The pole expansion of the Fermi operator is a discretized complex contour integral

fβ(ϵi − µ) ≈ Im
P∑

l=1

ωl

ϵi − (zl + µ)
(3)

The poles zl are the base points and the ωl the corresponding weights of the contour, which is chosen
to encircle the spectrum while excluding the non-analytic regions (figure 1).

This representation needs a relatively small number of poles P , which grows with the inverse
temperature β and the spectrum width ∆E like O(log(β ∆E)).

Based on this expansion one can derive the following expression for the density ρ in the real space
basis of the atomic orbital basis functions φi

ρ̂(x) ≈
∑

ij

φi(x) Im

(
P
∑

l=1

ωl

H − (zl + µ)S

)

︸ ︷︷ ︸

γij

φj(x) (4)

The chemical potential µ is an additional parameter, which has to be set to give the correct number
of electrons

Ne =

∫

ρ(x)dx (5)

For building the inverse (H − (zl + µ)S)−1 = A−1 only selected elements are calculated, using the
method of selected inversion, which is based on a triangular factorization. In case of a symmetric
A, this decomposition can be LDLT . Extracting the first column and row of the matrices, they can
be written as

A =

(

a bT

b Â

)

(A =)LDLT =

(
1
l L̂

)(
α

Â− bbT /α

)(

1 lT

L̂

) (6)

The inversion is based on the recursive scheme

A−1 =

(

α−1 + lTS−1l −lTS−1

−S−1l S−1

)

(7)

Due to the sparsity also the vectors l will be sparse, but with some additional fill-in, depending on the
factorization and preprocessing. Elements lTS−1l corresponding to zero-entries of l will also be zero,
and don’t need to be computed.

Copyright c⃝ 2013 Barcelona Supercomputing Center Internal Report

⇢̂ = One inversion per pole

Only a limited number of elements is
needed in the density matrix!!

Use of a very efficient
Selected Inversion algorithm

Pole Expansion plus Selected Inversion
(Lin Lin, Chao Yang, LBNL)

PEXSI FOR SIESTA - PROTOTYPE PHASE 3

Figure 1. Arrangement of the poles encircling the eigenvalue spectrum while avoiding the non-analytic
regions. By courtesy of Chao Yang and Lin Lin.

The chemical potential µ has to yield the correct number of electrons Ne =
∫

ρ(x)dx.

The pole expansion of the Fermi operator is a discretized complex contour integral

fβ(ϵi − µ) ≈ Im
P∑

l=1

ωl

ϵi − (zl + µ)
(3)

The poles zl are the base points and the ωl the corresponding weights of the contour, which is chosen
to encircle the spectrum while excluding the non-analytic regions (figure 1).

This representation needs a relatively small number of poles P , which grows with the inverse
temperature β and the spectrum width ∆E like O(log(β ∆E)).

Based on this expansion one can derive the following expression for the density ρ in the real space
basis of the atomic orbital basis functions φi

ρ̂(x) ≈
∑

ij

φi(x) Im

(
P
∑

l=1

ωl

H − (zl + µ)S

)

︸ ︷︷ ︸

γij

φj(x) (4)

The chemical potential µ is an additional parameter, which has to be set to give the correct number
of electrons

Ne =

∫

ρ(x)dx (5)

For building the inverse (H − (zl + µ)S)−1 = A−1 only selected elements are calculated, using the
method of selected inversion, which is based on a triangular factorization. In case of a symmetric
A, this decomposition can be LDLT . Extracting the first column and row of the matrices, they can
be written as

A =

(

a bT

b Â

)

(A =)LDLT =

(
1
l L̂

)(
α

Â− bbT /α

)(

1 lT

L̂

) (6)

The inversion is based on the recursive scheme

A−1 =

(

α−1 + lTS−1l −lTS−1

−S−1l S−1

)

(7)

Due to the sparsity also the vectors l will be sparse, but with some additional fill-in, depending on the
factorization and preprocessing. Elements lTS−1l corresponding to zero-entries of l will also be zero,
and don’t need to be computed.

Copyright c⃝ 2013 Barcelona Supercomputing Center Internal Report

PEXSI FOR SIESTA - PROTOTYPE PHASE 3

Figure 1. Arrangement of the poles encircling the eigenvalue spectrum while avoiding the non-analytic
regions. By courtesy of Chao Yang and Lin Lin.

The chemical potential µ has to yield the correct number of electrons Ne =
∫

ρ(x)dx.

The pole expansion of the Fermi operator is a discretized complex contour integral

fβ(ϵi − µ) ≈ Im
P∑

l=1

ωl

ϵi − (zl + µ)
(3)

The poles zl are the base points and the ωl the corresponding weights of the contour, which is chosen
to encircle the spectrum while excluding the non-analytic regions (figure 1).

This representation needs a relatively small number of poles P , which grows with the inverse
temperature β and the spectrum width ∆E like O(log(β ∆E)).

Based on this expansion one can derive the following expression for the density ρ in the real space
basis of the atomic orbital basis functions φi

ρ̂(x) ≈
∑

ij

φi(x) Im

(
P
∑

l=1

ωl

H − (zl + µ)S

)

︸ ︷︷ ︸

γij

φj(x) (4)

The chemical potential µ is an additional parameter, which has to be set to give the correct number
of electrons

Ne =

∫

ρ(x)dx (5)

For building the inverse (H − (zl + µ)S)−1 = A−1 only selected elements are calculated, using the
method of selected inversion, which is based on a triangular factorization. In case of a symmetric
A, this decomposition can be LDLT . Extracting the first column and row of the matrices, they can
be written as

A =

(

a bT

b Â

)

(A =)LDLT =

(
1
l L̂

)(
α

Â− bbT /α

)(

1 lT

L̂

) (6)

The inversion is based on the recursive scheme

A−1 =

(

α−1 + lTS−1l −lTS−1

−S−1l S−1

)

(7)

Due to the sparsity also the vectors l will be sparse, but with some additional fill-in, depending on the
factorization and preprocessing. Elements lTS−1l corresponding to zero-entries of l will also be zero,
and don’t need to be computed.

Copyright c⃝ 2013 Barcelona Supercomputing Center Internal Report

The method is applicable to
metals using low effective

temperatures

There are no DM locality approximations, as in
O(N) methods

BSC 2

1. Introduction

PEXSI is the name of a method that uses a pole expansion representation of the fermi operator
[1] to avoid the diagonalization usually needed in DFT codes. This representation would also yield
the critical O(n3) scaling with the system size, but when dealing with sparse matrices, the selected
inversion algorithm [2, 3] reduces the order to O(n2) for 3D systems and even further for systems with
reduced dimensionality. The implementation of this method is also called PEXSI, and PPEXSI is its
parallel version.

Siesta [4, 5] is a DFT code using localized orbitals as base functions, which results in sparse
Hamiltonian and overlap matrices. Thus this software is particularly interesting for spatially sparse
physical problems. Unfortunately the most powerful, reliable, and general eigenvalue solver, and thus
used in Siesta, is provided by ScaLAPACK, which does neither take advantage of the sparsity of the
matrices, nor does it scale well.

Siesta with PEXSI as solver can be a powerful combination because

• due to the better scaling with the system size (weak scaling) very big problems can be solved

• PEXSI has the potential for parallelization on two levels, enabling an efficient use of tens of
thousands of processors (strong scaling)

• data from SCF and MD iterations can be used for following iterations, which makes long running
calculations more efficient

These effects together make new classes of cutting edge physical problems approachable.

2. The PEXSI method

The algorithm’s name “PEXSI” reflects its two main ingredients: Pole EXpansion and Selected
Inversion.

The basic idea is to avoid diagonalization of the Hamiltonian with its unfavorable O(N3) scaling by
computing the density matrix directly from the Fermi operator. An efficient representation of the Fermi
operator is given by the pole expansion presented in [1]. For evaluating a term in this representation, a
matrix constructed from the Hamiltonian and overlap matrices needs to be inverted, which is basically
also an O(N3) operation. But when dealing with sparse matrices, like the ones generated from Siesta,
the selected inversion algorithm [2] reduces this order by calculating only the elements that are really
needed.

For sufficiently big problems PEXSI gives the following weak scaling:
(quasi-)1D: O(N)
(quasi-)2D: O(N3/2)

3D: O(N2)

2.1. Theory

The central element in DFT is the the electron density ρ̂(x) being the diagonal of the density matrix

γ̂(x, x′) =
∞∑

i=1

ψi(x)fβ(ϵi − µ)ψ⋆
i (x

′) (1)

with the orbitals ψi(x) and their occupation given by the Fermi-Dirac function

fβ(ϵi − µ) =
2

1 + eβ(ϵi−µ)
(2)

Copyright c⃝ 2013 Barcelona Supercomputing Center Internal Report

(Due to sparsity of
the target density matrix)

Pole 1 Pole 2 Pole P

..........

Trivially parallel over poles, with perfect load balancing

4 processors per pole x 40 poles :: 160 processors

The number of processors per pole is a parameter of the calculation.
Lower limit: as needed to fit the problem in memory.

9

B. Accuracy of the SIESTA-PEXSI approach

For one insulating and one metallic system (The size
of such system does not need to be very large), show the
accuracy of the PEXSI approach compared to the result
from diagonalization with increasing number of poles, af-
ter the SCF iteration.

C. E�ciency of the SIESTA-PEXSI approach

The sets of DNA and C-BN examples are the base
for examining the growth of the computational cost with
system size (weak scaling) as well as the increase of the
solution time with the number of processors (strong scal-
ing). The analysis is based on the time for the calculating
the first SCF step, including the setup of the Hamilto-
nian and, in case of diagonalization, computation of the
density matrix based on the results of the ScaLAPACK
eigenvalue solver. PEXSI uses 40 poles, which requires
for all systems two inertia counts and one µ iteration. In
subsequent SCF iterations information about the chem-
ical potential can be used for lowering the number of
inertia counts or even completely omitting it, reducing
the time per iteration even further.

Siesta-PEXSI is particularly suitable for high perfor-
mance computing, since the two levels of parallelization
allow using a large number processors e�ciently. The
total number of processes can be varied by tuning the
number of processes per pole (ppp) and the number of
poles treated in parallel. The e↵ect of both is demon-
strated in figure 2 for the largest DNA and C-BN sys-
tems examined. Configurations using the same ppp are
connected with lines and show very good scaling. The
first point on each line represents no parallelization over
poles, while the last point corresponds to full paralleliza-
tion. The ine�ciencies in this regime mainly come from
the symbolic factorization. This part can use only a lim-
ited number of processors smaller than ppp and thus does
not scale at all, a↵ecting the performance notable. This
is only a technical issue, related to the libraries currently
used, and will be resolved in future. Then the time for
symbolic factorization will play a only a marginal role.

Increasing the number of processors per pole, demon-
strated by points with the same number of poles treated
in parallel, allows reducing the time even further, but
scales less e�cient than the pole-parallelization. [LL:
Why is this the case? For C-BN it seems that the scaling
from 144ppp to 400ppp reduces the wall clock time by a
factor of 2, which is reasonably good.]

Due to the similar numbers of orbitals of both ex-
amples, diagonalization times are alike, but throughout
the tests much higher than the sulution times of Siesta-
PEXSI. In the case of C-BN

0.00 the Siesta-PEXSI ap-
proach is one order of magnitude faster and allows an
e�cient use of more than 10000 cores, while the scalig
of diagonalization is limited to about half of this. For
DNA-25 less processors per pole are used since this ex-

ample features sparser matrices. On the other hand this
sparsity makes the solver work two orders of magnitude
faster than diagonalization.
Another consequence of PEXSI dealing only with

sparse matrices is the smaller demand of memory. While
on Edison the memory of at least 1000 cores is needed
for ScaLAPACK, Siesta-PEXSI needs only 144 cores for
C-BN

0.00 and 64 for DNA-25. In the case of DNA even
this minimal configuration is more than four times faster
than diagonalization with 5120 processors.

FIG. 2. Strong scaling of C-BN0.00 and DNA-25 based on
the total time for the first SCF step. The various lines for
PEXSI result from using di↵erent numbers of processors per
pole (ppp), while the points on each curve belong to compu-
tations with 1, 2, 5, 10, 20, and 40 poles in parallel.

PEXSI’s beneficial scaling with the system size, as de-
scribed in section IIC, guarantees that for large enough
systems Siesta-PEXSI will always be faster than diag-
onalization. The scaling of the computational cost is
demonstrated for DNA and C-BN in figure 3.
In all tests full parallelization over poles is used. In

this configuration the influence of the symbolic factoriza-
tion would change the character of the method. Because
in future this influence will be negligible, the time for
symbolic factorization is not taken into account for the
analysis.
The numbers of processes for each system size are cho-

sen to be an e�cient trade-o↵ of reducing the time to
solution while keeping the cost, which increases with the
number of processes due to ine�ciencies, as small as pos-
sible. Following this guideline it turns out, that for C-
BN one can use more processors with Siesta-PEXSI than
with ScaLAPACK. This also means, that the advantage
of Siesta-PEXSI in terms of solution-time is even larger
than the benefit of cost. For very sparse problems, like
the largest DNA examples, the amount of processors that
can be used is similar for both methods, but Siesta-
PEXSI is about two orders of magnitude faster. More
details are listed in table II.
The analysis shows, besides Siesta-PEXSI’s favorable

Strong scaling

Weak scaling

The PEXSI solver will be included soon in the
Siesta distribution

SIESTA-PEXSI: Massively parallel method for efficient and accurate ab
initio materials simulation without matrix diagonalization
Lin Lin, Alberto García, Georg Huhs, Chao Yang
J. Phys.: Condens. Matter 26 305503 (2014)
doi:10.1088/0953-8984/26/30/305503

arXiv:1405.0194 [physics.comp-ph]

Examples of
special options
and features

New mixing options:
Hamiltonian
Charge density in Fourier space

Re-starting options:
Density matrix
Charge density

Replica calculations:
MPI-based dispatch
External scripting

(Download “trunk” (development) version)

Analysis tools
and utilities

• Basis optimization (Util/Optimizer)

• Population analysis: Mulliken, Voronoi,
Hirshfeld, Bader (see Manual)

• COOP-COHP analysis (Util/COOP)

Special SIESTA versions

LDA+U

 Distributed on the SIESTA web page.
 Synchronization to the latest version in progress.

Spin-orbit coupling

Implementation based on work by Jaime Ferrer’s
group (Univ. of Oviedo, Spain).
Distributed by request.

See the manual for a complete list of features

Monitor the SIESTA web page for updates

We welcome feedback

THANK YOU !

