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Warm up: a little bit of notation 

Vector defining the position of  
unit cell      

Position of atom     within the unit cell    

Position of atom     in unit cell      

Greek characters (     ) refer to atoms within the unit cell  

Latin characters (    ) refer to the different replicas of the unit cell      

Assuming periodic boundary conditions 



Here we shall assume that the instantaneous position of atom       in unit cell          
will deviate from its mean equilibrium position          by a small deviation             ,                                      

and we may write at any given time    

…but the ions do not sit without moving;                  
they oscillate around the mean equilibrium positions 

We shall assume that the typical excursions of each ion from its 
equilibrium position are small compared with the interionic spacing 



We shall remain in the adiabatic approximation, in which it is considered that the 
electrons are in their ground state for any instantaneous ionic configuration 

1. In principle, if we take all the orders in the expansion                             
(see the dot, dot, dot at the right), this expression is exact. 

2. All the derivatives are taken at the mean equilibrium positions. 
They are constants in the expansion. 

3. Since, the derivatives are taken at the equilibrium positions,          
the first derivatives in the previous expansion vanish. 

Some considerations  

Total energy of a periodic crystal 
with small lattice distortions 



Total energy of a periodic crystal with small lattice 
distortions in the harmonic approximation 

We shall now consider ionic displacements that are small 
compared with the interatomic spacing.  

Then, we can consider that all the terms beyond the quadratic one are negligible  
(a small number to the cube is much smaller than a small number to the square). 

This approximation is called the harmonic approximation 

The total energy of a periodic crystal in the harmonic approximation can be written  



Interatomic force constants in real space: 
definitions and symmetry properties 

The second derivatives of the energy, coupling constants, 
are defined as the interatomic force constants in real space 

Isotropy of space 

Point group symmetry 

Translation invariance upon displacement of the lattice by an arbitrary 
lattice constant: the second derivative of the energy can only depend on 
the difference between      and  

They must satisfy a number of conditions that arise from 



The classical equation of motion for the ions 

Force exerted on atom     in unit cell             
by all the other ions and the electronic cloud 

Acceleration of atom     in unit cell     

In cartesian components 

By definition of force By definition of acceleration 

In cartesian components 



The classical equation of motion for the ions 

Since 

Then 

For each atom, there are three equations of motion of this type 
(one for each cartesian direction). In total,  



The classical equation of motion for the ions: 
a system of coupled equations 

For each atom, there are three equations of motion of this type 
(one for each cartesian direction). In total,  

The equations of motion are coupled 

We require the displacement of atom     , 
in unit cell     ,                                       
along cartesian direction      ,   

To know the displacement of atom     , 
in unit cell      ,                                   
along cartesian direction      ,  



The classical equation of motion for the ions:     
seeking for a general solution (temporal dependency) 

For each atom, there are three equations of motion of this type 
(one for each cartesian direction). In total,  

We seek for general solutions where all the displacements have a 
temporal dependency of the form  

The equations of motion are coupled 

First ansatz: temporal dependency 

:index for the different solutions to the equations 
(index of mode) 



The classical equation of motion for the ions:     
seeking for a general solution (spatial dependency) 

For each atom, there are three equations of motion of this type 
(one for each cartesian direction). In total,  

For periodic structures, we can write the displacements in terms of 
a plane wave with respect to cell coordinates 

The equations of motion are coupled 

Second ansatz: spatial dependency 

In contrast to a normal plane wave, this wave is 
only defined at the lattice point 



A few properties and consequences 
of the ansatz 

For periodic structures, we can write the displacements in terms of 
a plane wave with respect to cell coordinates 

In contrast to a normal plane wave, this wave is only defined at the lattice points 

The vibration of the ions have been classified according to a wave vector     

   - Approach equivalent to that taken for the electrons through the Bloch theorem      

   - If the solid is simulated by a supercell composed of N unit cells +                                
Born-von Karman boundary conditions, then only compatible      points can be 
used in the previous expression. 

There are as many       allowed values as unit cells there are in the supercell 

is the component along direction       of a vector called the 
polarization vector of the normal mode 



A little bit of algebra in the equation of motion: 
taking the time derivatives of the ansatz equation 

Now we replace the ansatz solution in the equation of motion 

Taking the time derivatives 

Remember that the ansatz is 



A little bit of algebra in the equation of motion: 
replacing the ansatz in the equation 

Multiplying both sides by  

Reordering the sums, and multiplying both sides by   



Definition of the interatomic force constant in real space 

Then, the previous equation takes the form 

The summation in        must be performed over all the unit cells. Since 
the interatomic force constants in real space depend only on the relative 
distance between the atoms, the origin      does not play a role anymore, 
and can be set to 0.  

A little bit of algebra in the equation of motion: 
introducing the interatomic force constant 



The term in brackets is nothing else than the discrete Fourier transform 
of the interatomic force constant in real space 

Therefore, the movement of the atoms can be defined in terms of the 
following dynamical equations 

A little bit of algebra in the equation of motion: the 
Fourier transform of the interatomic force constant 



The equation of motion in matricial form 

For each      vector, we have a linear homogenous system of  equations, 
that in matrix form can be read as   

Mass matrix Phonon 
eigendisplacements 

Phonon 
eigendisplacements 

Fourier transform of 
the interatomic force 

constants  

Phonon 
frequencies 



The mass matrix: example for a system 
with two atoms in the unit cell 

Atom 1 
Direction x 

Atom 1 
Direction y 

Atom 1 
Direction z 

Atom 2 
Direction x 

Atom 2 
Direction y 

Atom 2 
Direction z 

Atom 1 
Direction x 

Atom 1 
Direction y 

Atom 1 
Direction z 

Atom 2 
Direction x 

Atom 2 
Direction y 

Atom 2 
Direction z 



A renormalization of the displacements by the square root 
of the mass allows to solve a standard eigenvalue problem 

This is not a standard eigenvalue problem due to the presence of the mass matrix 
(somehow the “eigenvalue” changes from one row to the other…) 

We can recover an standard eigenvalue problem redefining the eigenvectors 
incorporating the square root of mass 



The dynamical equation with the 
renormalized displacements  

Redoing previous algebra 

We define the dynamical matrix as 

So finally the dynamical equation reduces to  



The dynamical equation with the 
renormalized displacements  

Phonon 
eigenvectors 

Phonon 
eigenvectors 

Dynamical matrix Phonon 
frequencies 

Redoing previous algebra 

In matrix form 



Units 



The dynamical matrix is Hermitian  
By definition 

The transpose of the dynamical matrix is … …and the complex conjugate of the transpose 



Relation between phonon eigenvectors and 
phonon eigendisplacements 

In a standard code, the dynamical matrix is diagonalized, 
and the solutions are the phonon eigenvectors 

However, to compute many properties related with the lattice 
dynamics, we require the phonon eigendisplacements.              

For instance, the mode polarity 

Required to compute, for instance, the static dielectric constant  

The phonon eigendisplacements and phonon eigenvectors are related by  



Normalization of the phonon eigenvectors 
and phonon eigendisplacements 

For the phonon eigenvectors, at a given m and  

For the phonon eigendisplacements, at a given m and  



How to compute the force constant matrix in 
reciprocal space: perturbation theory 

By definition 

Combining density functional with first-order perturbation theory:  
Density Functional Perturbation Theory (DFPT) 

Advantages: Disadvantages: 

It allows to keep the simplicity of a single 
cell calculation, whatever q-vector which 

is considered, and that can even be 
incommensurate with the crystal lattice  

Requires some additional 
implementation effort  



How to compute the force constant matrix in real space: 
finite displacement technique 

By definition 

Knowing the force constant matrix 
in real space… 

…we can compute the dynamical 
matrix for every q-point 

We displace the atom       in the unit cell along direction      ,                            
and compute how changes the force on atom       in unit cell       along direction 

The derivative is computed by finite differences 



How to compute the force constant matrix in real space: 
finite displacement technique 

By definition 

Knowing the force constant matrix 
in real space… 

…we can compute the dynamical 
matrix for every q-point 

In principle, we should displace the atoms in the unit cell one by one in all the 
three cartesian directions, and look at the force on the atom of our choice, that 

might be in a unit cell very far away. 

From a practical point of view, the values of the force constant matrix in real 
space decay with the distance between the atoms… so, practically the previous 

sum is cut to include only a given number of distant neighbours 



How to compute phonons in Siesta: Use of the Vibra suite. 
Step 1: Build the supercell 

Unit cell in real space Supercell in real space 



How to compute phonons in Siesta: Use of the Vibra suite. 
Step 1: Build the supercell 

Variables to define the 
unit cell in real space 

Variables to define the 
supercell in real space 

We prepare an input file to run fcbuild 
and generate the supercell. Let´s call 

this input file Si.fcbuild.fdf 



How to compute phonons in Siesta: Use of the Vibra suite. 
Step 1: Build the supercell 

$siesta/Utils/Vibra/Src/fcbuild < Si.fcbuild.fdf 

This will generate a file called FC.fdf with: 

-  The structural data of the supercell (supercell lattice vectors, atomic coordinates,…) 

-  The atoms that will be displaced to compute the interatomic force constants in real space 

-  The amount that the atoms will be displaced 

The supercell should contain enough atoms so that all non-neglegeable elements of the 
force constant matrix are computed. The range in real space in which the force constant 

matrix decays to zero varies widely from system to system!!. 



How to compute phonons in Siesta: Use of the Vibra suite. 
Step 2: Displace the atoms in the unit cell and compute IFC 

Unit cell in real space Supercell in real space 

Ideally, we should displace only the atoms in the unit cell, but this 
is not possible when using periodic boundary conditions… again, it 

is important to converge the size of the supercell 



How to compute phonons in Siesta: Use of the Vibra suite. 
Step 2: Displace the atoms in the unit cell and compute IFC 

Only the atoms of the 
unit cell are displaced 

Many variables are taken directly from 
the file where the supercell is described 

We prepare an input file to run siesta 
and compute the interatomic force 

constant matrix. Let´s call this input file 
Si.ifc.fdf 



$siesta/Obj/siesta < Si.ifc.fdf > Si.ifc.out 

This will generate a file called SystemLabel.FC with the interatomic force constant matrix 

How to compute phonons in Siesta: Use of the Vibra suite. 
Step 2: Displace the atoms in the unit cell and compute IFC 

Displace atom 1 along direction -x 

As many lines as atoms in the supercell, 
force on the atom j in the supercell         

(in eV/Å) 

Then loop on the directions along 
which the atom 1 is displaced: 

-x, +x, -y, +y, -z, +z 

Finally, loop on the atoms in the unit cell 



How to compute phonons in Siesta: Use of the Vibra suite. 
Step 3: Compute the dynamical matrix and diagonalize 

Once the interatomic force constant matrix has been computed, 
a Fourier transform is carried out at different k-points to 

calculate the dynamical matrix 

The k-points are defined in the same way as to compute the 
electronic band structure in the same file used to define the supercell 

(Si.fcbuild.fdf) 



How to compute phonons in Siesta: Use of the Vibra suite. 
Step 3: Compute the dynamical matrix and diagonalize 

$siesta/Utils/Vibra/Src/vibrator < Si.fcbuild.fdf 

Output:  

SystemLabel.bands: mode frequencies (in cm-1) 
(Same structure as the electronic band structure) 

SystemLabel.vectors: eigenmodes for each k-point 
(format self-explained) 

To plot the phonon band structure: 

$bandline.x < Si.bands > Si.bands.dat  

$gnuplot 

$plot “Si.bands.dat” using 1:2 with lines 



Convergence of the phonon structure with 
the size of the supercell 

1 × 1 × 1 2 × 2 × 2 3 × 3 × 3 

Plane waves + pseudopotentials 

Dots represent experimental points 
P. E. Van Camp et al., Phys. Rev. B 31, 4089 (1985) 


