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Adiabatic decoupling
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⇒Nuclei are much
   slower than electrons

F = m a, evolution in
(discretised) time:

Molecular dynamics
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Quantum mechanics
Many electron problem:

Density Functional Theory



• Follows the time evolution of a system
• Solve Newton’s equations of motion:

• Treats electrons quantum mechanically
• Treats nuclei classically

•Hydrogen may raise issues:
- tunnelling (overestimating Energy barriers)

• Allows study of dynamic processes
• Annealing of complex materials
• Examines the influence of temperature
• Time averages Vs Statistical averages

Molecular Dynamics
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Ergodicity
• In MD we want to replace a full sampling on the appropriate statistical

ensemble by a SINGLE very long trajectory.

• This is OK only if system is ergodic.

• Ergodic Hypothesis: a phase point for any isolated system passes in
succession through every point compatible with the energy of the system
before finally returning to its original position in phase space. This journey
takes a Poincare cycle.

• In other words, Ergodic hypothesis: each state consistent with our
knowledge is equally “likely”.
– Implies the average value does not depend on initial conditions.
–  <A>time= <A>ensemble ,

so  <Atime> = (1/NMD) = ∑t=1,N At   is good estimator.

• Are systems in nature really ergodic? Not always!
– Non-ergodic examples are glasses, folding proteins (in practice) and

harmonic crystals (in principle). Broken ergodicity



When do we use MD?

Dynamical systems in general, e.g.

• Liquid and Amorphous systems:
• Molecular Liquids (H2O,CO2)
• Glasses (Si, SiO2)

•  Displacive Phase transitions (P and T relevant).
•  Study of kinetic effects.

• Diffusion at surfaces
• Thermal stability

• Finite-temperature effects in non-harmonic
systems



Molecular Dynamics(I)

In Molecular Dynamics simulations, one computes the evolution of the positions
and velocities with time, solving Newton’s equations.

•Algorithm to integrate Newton’s equations:  “Verlet”

• Initial conditions in space and time.
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Molecular Dynamics(II)
• Choosing particles, masses and interatomic forces (model of interactions)

• Initialize positions and momenta at t=0  (initial conditions in space and time)

• Solve  F = m a  to determine r(t), v(t). (integrator)

– time discrete, instead of continuous

• Calculate the properties of interest along the trajectory

• Estimate errors

• Use the results of the simulation to answer physical questions

t0 t1 t2 tNtn tn+1tn-1

h=δt



Molecular Dynamics III

• Timestep must be small enough to accurately sample highest
frequency motion

• Typical timestep is 1 fs (1 x 10-15 s)
• Typical simulation length = Depends on the system of study!!

(the more complex the PES the longer the simulation time)

• Simulation has two parts:
- equilibration (redistribute energy)

 System is equilibrated if averages of dynamical and 
structural quantities do not change with time.

- production (record data)
• Results:

- diffusion coefficients
- Structural information (RDF’s,)
- free energies / phase transformations (very hard!)

• Is your result statistically significant?



Choosing the integrator

• Small errors or minimal differences in initial conditions -> different
trajectories (Ergodicity!).

• Statistical averages are relevant quantities; do not depend on details of
trajectories (IF simulation is long enough).

• Conservation of energy is important.
Error in energy conservation < 0.01 kT.

• CPU time dominated by calculation of forces. Preferable algorithms
requiring few evaluations of the forces, and do not need higher
derivatives of the potential.



Verlet algorithm

The most commonly used algorithm:

r(t+h) = r(t) + v(t) h + 1/2 a(t) h2 + b(t) h3 + O(h4)           (Taylor series expansion)
r(t-h)  = r(t) -  v(t) h + 1/2 a(t) h2 -  b(t) h3 + O(h4) 

r(t+h) = 2 r(t) - r(t-h) + a(t) h2 + O(h4) Sum

v(t) =  (r(t+h) - r(t-h))/(2h)  + O(h2) Difference (estimated velocity)

• Trajectories are obtained from the first equation. Velocities are not necessary.
• Errors in trajectory: O(h4)
• Preserves time reversal symmetry.
• Excellent energy conservation.
• Modifications and alternative schemes exist (leapfrog, velocity Verlet), always within

the second order approximation



Liquid water

MD
simulations
from first
principles

200 water molecules in a
box periodically

repeated;
30 ps in 0.5 fs timesteps

F Corsetti



First-principles molecular dynamics of liquid water
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Equation of state of liquid water

Follow pressure vs time
for different densities

Then average

Average P vs density

Different density
functionals

F Corsetti et al, J. Chem. Phys. 2013



Radial distribution functions
O-O

F Corsetti, E Artacho, J M Soler, S S Alexandre and M.-V.Fernandez-Serra, J. Chem. Phys. (2013).

Low-density liquid.

High-density liquid.



Strong bonds,
no pre-edge

Weak bonds
could give pre-edge

Electronic effect associated to intermolecular vibrations
Now understood and exploited for wet surfaces (Stanford & Berkeley)

Understanding the coordination
On electrons and hydrogen-bond connectivity in liquid water

M. V. Fernandez-Serra & E. Artacho, PRL 2006



Dynamics: Diffusion
Diffusivity maximum vs Pressure

F Corsetti et al, J. Chem. Phys. 2013



Different ensembles, different Lagrangians,
different Conserved magnitudes.

• NVE (Verlet):
Microcanonical.

• Integrates Newtons equations of
motion, for N particles, in a fixed
volume V.

• Natural time evolution of the system:
E is a constant of motion

• NVT (Nose): Canonical
• System in thermal contact with a

heat bath.
• Extended Lagrangian:
• N particles + Thermostat, mass Q.

• NPE (Parrinello-Rahman)
(isobarical)

• Extended Lagrangian
• Cell vectors are dynamical

variables with an associated
mass.

• NPT (Nose-Parrinello-
Rahman)

• 2 Extended Lagrangians
• NVT+NPE.



Nose-Hoover thermostat

• MD in canonical distribution (TVN)
• Introduce a friction force ζ(t)

T Reservoir

SYSTEM

! 

dp
dt

= F(q,t) "#(t)p(t)

Dynamics of friction coefficient to get canonical ensemble

Feedback makes
K.E.=3/2kT

Q= fictitious “heat bath mass”. Large Q is weak coupling! 
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Hints

• Nose Mass:
Match a vibrational frequency of the system, better high
energy frequency



Which Ensemble should we use?

• NVE (Verlet): Microcanonical

• Good trajectories.
• Time reversible (up to numerical

error)
• Dynamical variables are well

defined.
• Initial X and V are relevant:

necessity of equilibration.

• NVT (Nose): Canonical

• Good T control
• Equilibrates the system.
• Choice for Structural
     sampling.
• Sensitive to Nose mass.

Same sampling in 
thermodynamic limit

• NPE (Parrinello-Rahman)

• Phase transitions systems under
pressure.

• 1  mass parameter (barostat)

• NPT (Nose-Parrinello-
Rahman)

• Phase transitions under P and T
• 2 mass parameters, barostat and

thermostat. (Fluctuations!!



Molecular Dynamics in SIESTA(1)

• MD.TypeOfRun Verlet
NVE ensemble dynamics

• MD.TypeOfRun Nose
NVT dynamics with Nose thermostat

• MD.TypeOfRun ParrinelloRahman
NPE dynamics with P-R barostat

• MD.TypeOfRun NoseParrinelloRahman
NPT dynamics with thermostat/barostat

• MD.TypeOfRun Anneal
Anneals to specified p and T

Variable cell



Molecular Dynamics in SIESTA(2)

• Setting the length of the run:
MD.InitialTimeStep 1
MD.FinalTimeStep 2000

• Setting the timestep:
MD.LengthTimeStep 1.0 fs

• Setting the temperature:
MD.InitialTemperature 298 K
MD.TargetTemperature 298 K

• Setting the pressure:
MD.TargetPressure 3.0 Gpa

• Thermostat / barostat parameters:
MD.NoseMass / MD.ParrinelloRahmanMass

Maxwell-Boltzmann



Annealing in SIESTA

• MD can be used to optimize structures:
MD.Quench true
  (zeros velocity when opposite to force)

• MD annealing:
MD.AnnealOption Pressure
MD.AnnealOption Temperature
MD.AnnealOption TemperatureAndPressure

• Timescale for achieving target
MD.TauRelax 100.0 f



Vibrational spectrum: Phonons

• Calculating Dynamical Matrix: Mass weighted Hessian Matrix
(Harmonic approximation).

• Frozen Phonon approximation:
• Numerical evaluation of the second derivatives. (finite differences).

• Density Functional Perturbation Theory (Linear Response):
• Perturbation theory used to obtain analytically the Energy second derivatives within a self

consistent procedure.

• Molecular dynamics: Green-Kubo linear response.
•  Link between time correlation functions and the response of the system to weak

perturbations.

Harmonic
Approx.

Beyond
Harmonic



Phonons and MD

1. MD simulations (NVE)
2. Fourier transform of 

Velocity-Velocity autocorrelation function.

1. Anharmonic effects: ω(T)
2. Expensive, but information available for MD
     simulations.



Different aspects of ergodicity

• The system relaxes on a “reasonable” time scale towards a unique
equilibrium state (microcanonical state)

• Trajectories wander irregularly through the energy surface
eventually sampling all of accesible phase space.

• Trajectories initially close together separate rapidily.(sensitivity to
initial conditions). Lyapunov exponent.

Ergodic behavior makes possible the use of statistical
methods on MD of small system.

Small round-off errors and other mathematical
approximations may not matter.



Particle in a smooth/rough circle

From J.M. Haile: MD Simulations


