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Calculating the density matrix
Integration in k and energy space

General formalism of Non-Equilibrium Green’s functions
An integration over k space and energy space

ρ =
1
π

" ∞

−∞,BZ
dεdkGk(z)

[
Γ L,k(z)nF,L(ε) + Γ R,k(z)nF,R(ε)

]
G†k(z), z = ε+ iη

Gk(z) =
1

zSk −Hk −ΣL,k(z)−ΣR,k(z)
Γ j,k(z) = i

[
Σj,k(z)−Σ†j,k(z)

]
/2

nF,j =
1

1+ exp
[
(ε −µj )/(kBT )

]
η broadens the density contribution
Inverting a huge matrix is extremely expensive, scales with N3!

For those interested: You can derive the following equation using the above 3 equations!
We will leave that as an exercise!
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Arriving at the governing formulas

See Brandbyge et al., DOI: 10.1103/PhysRevB.65.165401 for more details
The full density can be calculated in Nµ ways, where Nµ ∈ {1,2}.

ρL =
i
π

" ∞

−∞,BZ
dεdk

[
Gk(z)−G†k(z)

]
nF,L(ε) +

1
π

" ∞

−∞,BZ
dεdkGk(z)Γ R,k(ε)G

†
k(z)

[
nF,R(ε)−nF,L(ε)

]
,

ρR =
i
π

" ∞

−∞,BZ
dεdk

[
Gk(z)−G†k(z)

]
nF,R(ε) +

1
π

" ∞

−∞,BZ
dεdkGk(z)Γ L,k(ε)G

†
k(z)

[
nF,L(ε)−nF,R(ε)

]
.

This is split in two terms

Equilibrium

ρj,eq =
i
π

" ∞

−∞,BZ
dεdk

[
Gk(z)−G†k(z)

]
nF,j (ε)

Non-equilibrium

∆j,neq =
1
π

" ∞

−∞,BZ
dεdkGk(z)Γ j ′,j,k(ε)G

†
k(z)

[
nF,j ′ (ε)−nF,j (ε)

]
.

Precision comes in how well we calculate both terms
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k-point sampling
TranSIESTA , TBtrans ∫

dk ≈
∑
k

TranSIESTA
In TranSIESTA the k-point sampling is the same as for transverse directions in SIESTA

FDF-file:

%block kgrid_Monkhorst_Pack

<A1> 0 0 0.

0 <A2> 0 0.

0 0 <A3> 0.

%endblock kgrid_Monkhorst_Pack

TranSIESTA perception of FDF-file:

%block kgrid_Monkhorst_Pack

<A1> 0 0 0.

0 <A2> 0 0.

0 0 1 0.

%endblock kgrid_Monkhorst_Pack

TranSIESTA will truncate number of k-points in A3 direction to 1

Converge k-points for SIESTA and utilise that for your simulations

Note, this is not so for TBtrans, we will return to this!
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Integration in energy space
Equilibrium density

ρeq,k =
i
π

∫ ∞
−∞
dε

[
Gk(z)−G†k(z)

]
nF(ε)

The Green’s function only has poles on the real axis (the energy eigenvalues) and on
the imaginary axis (the Fermi function poles)
We employ a complex contour method based on the residue theorem∮

dε
[
Gk(z)−G†k(z)

]
nF(z −µ) = −i2πkBT

∑
zν

[
Gk(zν)−G†k(zν)

]
, zν = ikBTπ(2ν +1)

Partition the LHS to arrive at the expression in Brandbyge et al., DOI:
10.1103/PhysRevB.65.165401

E

=

µ

L

C

Rzν

∮
dε =

∫
R
dε+

∫
L
dε+

∫
C
dε

The Green’s function is smooth far in the complex plane, whereas it is non-smooth on
the real-axis
We are forced to do numerical integration and resort to Gaussian quadrature
methods
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Integration in energy space
Equilibrium density — an example
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Integration in energy space
Non-equilibrium density

This is where trouble enters

This triple product is the culprit:

∆j,neq,k =
∫ ∞
−∞
dεGk(z)Γ j,kG

†
k(z)(nF,j(ε)−nF,j ′ (ε)), z = ε+ iη

Along the real axis the triple-product is non-smooth

We cannot use Gaussian quadrature methods

We must resort to fine grained numerical integration

The bias window is governed by the difference nF,i(ε)−nF,i′ (ε), above and below the
corresponding chemical potentials will the Fermi-functions limit the contribution

Control broadening of DOS along real axis with imaginary part η, high⇒ broadening
of levels and fewer points, low⇒ high accuracy and requires more points
TS.biasContour.Eta
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Integration in energy space
Non-equilibrium density — an example
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Utility TBtrans
Calculating the transport

A utility to calculate the transport from a TranSIESTA calculation

tbtrans < RUN.fdf > RUNTBT.out

Calculating the current

I(V ) = G0

" ∞

−∞,BZ
dεdk Tr

[
Γ L,kG

†
k(z)Γ R,kGk(z)

]
(nF,L(ε)−nF,R(ε))

Difference in Fermi functions makes window narrow (as for the non-equilibrium
contribution)

The full energy spectrum (outside of bias-window) is still interesting!

Control energy window:
TS.TBT.Emin <lower bound energy>

TS.TBT.Emax <upper bound energy>

TS.TBT.NPoints <number of separations>

PDOS calculation from Green’s function via
TS.TBT.PDOSFrom <first atom>

TS.TBT.PDOSTo <last atom>
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Utility TBtrans
Example output

Several files:

LDOS Bulk density of states for left electrode
RDOS Bulk density of states for right electrode
TEIG k-point resolved transmission eigenvalues, see e.g. Paulsson and Brandbyge, DOI:

10.1103/PhysRevB.76.115117
AVTEIG k-point averaged transmission eigenvalues
TRANS k-point resolved transmission

AVTRANS k-point averaged transmission

AVTRANS:

# Averaged transmission, total DOS and projected DOS

# E [eV] Trans [G0] TotDOS PDOS

-0.50000 0.52117304E+00 0.85934817E+00 0.35934817E+00

-0.49000 0.51903380E+00 0.97680060E+00 0.47680060E+00

-0.48000 0.51631594E+00 0.11658509E+01 0.80658509E+00

...

1 Energy
2 Transmission
3 Total DOS in central region
4 Projected DOS for denoted region (defaulted to entire central region)
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Utility TBtrans
k-point sampling

Transmission is per surface area (double the electrode surface⇒ double the
transmission, for bulk systems)

Important!

Transmission highly k-point dependent. Even though the electronic structure is well
explained we need a higher density of k-points for TBtrans.

You can relate this to the bandstructure; you can recreate the bandstructure from an
electronic structure calculation with few k-points, yet you cannot obtain the full

bandstructure by linear interpolation of the eigenvalues at the simulated k-points

TBtrans k-point sampling by (defaults to kgrid Monkhorst Pack):

%block TBT_kgrid_Monkhorst_Pack

<A1> 0 0 0.

0 <A2> 0 0.

0 0 1 0.

%endblock TBT_kgrid_Monkhorst_Pack

A good example for this point is graphene

Technical University of Denmark 12/13



Utility TBtrans
k-point sampling

Transmission is per surface area (double the electrode surface⇒ double the
transmission, for bulk systems)

Important!

Transmission highly k-point dependent. Even though the electronic structure is well
explained we need a higher density of k-points for TBtrans.

You can relate this to the bandstructure; you can recreate the bandstructure from an
electronic structure calculation with few k-points, yet you cannot obtain the full

bandstructure by linear interpolation of the eigenvalues at the simulated k-points

TBtrans k-point sampling by (defaults to kgrid Monkhorst Pack):

%block TBT_kgrid_Monkhorst_Pack

<A1> 0 0 0.

0 <A2> 0 0.

0 0 1 0.

%endblock TBT_kgrid_Monkhorst_Pack

A good example for this point is graphene

Technical University of Denmark 12/13



FDF-flags

Ensure charge neutrality, loosing/accumulating too much charge is erroneous

Qtot: 84.000

ts-charge: 1.461 14.528 1.479 50.436 1.447 14.547 83.897

TranSIESTA kgrid Monkhorst Pack

TranSIESTA TS.ComplexContourEmin

TranSIESTA TS.ComplexContour.NCircle

TranSIESTA TS.ComplexContour.NLine

TranSIESTA TS.ComplexContour.NPoles

TranSIESTA TS.biasContour.Eta

TranSIESTA TS.biasContour.NumPoints

TranSIESTA/TBtrans TS.Voltage

TBtrans TS.TBT.Emin

TBtrans TS.TBT.Emax

TBtrans TS.TBT.NPoints

TBtrans TS.TBT.PDOSFrom

TBtrans TS.TBT.PDOSTo

TBtrans TBT kgrid Monkhorst Pack
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