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Atomic units 

  

€ 

e = me =  =1
atomic mass unit =  me

atomic length unit =  1 Bohr =  0.5292 Ang
atomic energy unit =  1 Hartree =  27.2 eV
SIESTA energy unit =  1 Ry =  0.5 Hartree =  13.6 eV

Hk = −
1
2
∇2

V (r) =
ρ(r ')
r − r'∫ d3r'

ρ(r) ≡ n(r) > 0



Real spherical harmonics 

Associated Legendre polynomials Normalization factors 

l = 0 

m = 0 

l = 1 

m = -1 m = 0 m = +1 

Pictures courtesy of Victor Luaña 
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The one-particle Kohn-Sham hamiltonian 

Transforming the semilocal pseudopotential form into the fully nonlocal separable 
Kleinman-Bylander form 

Kinetic energy operator Exchange-correlation potential 

(Assume LDA approach) 

Hartree potential 



Exchange-correlation functional 
Spin dependency: 
•  Unpaired electrons 
•  Non-singlet states 
•  Ferromagnetic solids 

Local density approximation (LDA): 
•  Unambiguous and purely nonempirical 
•  Generally bonds too short and strong 
•  Frequently too crude 

Generalized gradient approximation (GGA): 
•  Many flavours with same functional form but different approximations 
•  Versions optimized for molecules OR for solids 
•  Generally bonds somewhat long and weak but much better than LDA 
•  Tendency to overestimate high-spin states 
•  Underestimates weak bonds (vdW) 

Van der Waals functionals (VDW): 
•  Much better for weak vdW interactions 
•  vdW bonds systematically too long 

No hybrid functionals in Siesta! 

€ 

Exc ρ↑ (r),ρ↓(r)[ ] ⇒ Vxc
↑↓(r) fdf labels: 

•  SpinPolarized 
•  FixSpin 
•  TotalSpin 
•  XC.Functional 
•  XC.Authors 

€ 

Vxc ρ(r)( )

€ 

Vxc ρ(r),∇ρ(r)( )

€ 

Vxc (r) = K ρ(r),∇ρ(r),ρ(r'),∇ρ(r '), r − r'( )∫ d3r '



The neutral-atom potential 

Neutral atom potential Vanishes exactly ar rc 

CORE 

VALENCE 

Potential outside the sphere 
vanishes  

(Gauss theorem ⇒ 
generated by the total  

charge inside the sphere      
= 0 if neutral atom) 

€ 

ρ(r) = ρatom (r) +δρ(r) ⇒ VH (r) =VH
atom (r) +δVH (r)



Two- and three-center matrix elements 

KB pseudopotential projector 

Two center integrals 

Computed in reciprocal space and tabulated 

Basis orbitals 

Basis orbitals 
Non self-consistent 

Three center integrals 

Three-dimensional real space grid 

Self-consistent 



The density matrix, a basic ingredient of SIESTA   

Occupation of state  

Inserting the expansion into the definition of the density 

where, with                  , the density matrix is defined  

Expansion of the eigenvectors in a basis of localized atomic orbitals 



Three dimensional grid to compute                            
Hartree, exchange correlation and neutral atom potentials   



Fineness of the grid controlled by a single parameter, 
the “MeshCutoff” 

Ecut : maximum kinetic energy of the plane waves that can be 
represented in the grid without aliasing  

Δx   
In the grid, we represent the density ⇒ grid cutoff not directly comparable 

       with the plane wave cutoff to represent wave functions 

(Strictly speaking, the density requires a value four times larger)  

fdf label: 
•  MeshCutoff 
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The grid breaks traslation symmetry, 
the “eggbox” effect 

E 
x 

Grid points 

Orbital/atom 

Affects more to forces than to energy 
Solutions: 

 - Increase cutoff (computational effort in time and memory) 

 - “Grid-cell sampling” 

 - Filter the atomic orbitals [E. Anglada et al. Phys. Rev. B 73, 115122 (2006)]  



Convergence of the results with the grid cutoff 

/ 2 



Solving Schrödinger’s equation 

Expansion of the eigenvectors in a basis of localized atomic orbitals 

Inserting the expansion of the eigenvector into the Kohn-Sham equation 

Multiplying by         at the left in both sides and integrating over all space 

Transposing everything to the left hand side term 



Solving Schrödinger’s equation 

“Generalized” Eigenvalue Problem 

(Note: in TranSiesta, Green’s functions are used inestead of Eigenvalues / Eigenvectors) 

  

€ 

H  c = εS  c 



If diagonalization, the generalized eigenvalue problem is 
solved using standard mathematical libraries 

Serial: 

BLAS 

LAPACK 

Parallel: 

BLACS 

SCALAPACK 

Freely available in http://www.netlib.org 

Most machine vendors have their own implementations 
available for their own platforms (acml, mkl,…).  

= 

N × N N × N N × 1 N × 1 



The one-particle eigenstates are filled following the 
“Aufbau” principle: from lower to higher energies 

Occupation numbers 

The ground state has one (or two if spin independent) 
in each of the orbitals with the lowest eigenvalues 

A smearing of the electronic occupation might be done: 

    Fermi-Dirac   (OccupationFunction  FD) 

    ElectronicTemperature  

    Methfessel Paxton  (OccupationFunction  MP) 



The Kohn-Sham equations must be solved self-consistently 
The potential (input) depends on the density (output) 

Initial guess 

Calculate effective potential 

Solve the KS equation 

Compute electron density 
No 

Output quantities 
Energy, forces, 

stresses … 

Yes 
Self-consistent? 



SCF convergence 

Charge sloshing: 
   E1<E2  =>  n1>n2  =>  E1>E2  =>  n1<n2 

Simple mixing: 
   ρn+1 = (1-w) ρin + w ρout 

Pulay mixing: 
   ρin      ρout = ρin + Δρ 
   Δρn+1 = wn-2 Δρn-2 + wn-1 Δρn-1 + wn Δρn = min 
   ρn+1 = wn-2 ρn-2 + wn-1 ρn-1 + wn ρn + w ρout 

fdf labels: 
•  ElectronicTemperature 
•  OccupationFunction 
•  MixHamiltonian 
•  DM.UseSaveDM 
•  DM.MixingWeight 
•  DM.NumberPulay 
•  DM.Tolerance 
•  MaxSCFiterations 



Kohn-Sham energy in SIESTA 

+ Sum extra terms if a net charge (Emadel), an external electric field (DUext), 
 Order-N solver (eta*DQ) are used, or if the nuclei are moving (Ekinion) 

Ekin 

Enl 

Eions 

DEna 

DUscf 

Exc 

Ena 



How can we simulate an infinite periodic solid? 
Periodic (Born-von Karman) boundary conditions 

We should expect that the bulk properties to be unaffected by the 
presence of its surface. 

A natural choice to emphasize the inconsequence of the surface 
by disposing of it altogether Supercell + 

Born-von Karman boundary conditions 



Electrons in a periodic potential 

Bloch Theorem: 

Periodicity in reciprocal space 
≡Reciprocal lattice vector 

Instead of computing an infinite 
number of electronic wave functions 

Finite number of wave functions at an 
infinite number of k-points in the 1BZ 



K-dependent matrix elements 

€ 

ψkj (r) = cµkjφµR(r)e
ik(R+r µ )

µR
∑

Hµνk − E j Sµνk( )cνkj = 0
ν

∑

Hµνk = φµR HφνR' e
ik(R+r µ −R'−rν )

R'
∑

Sµνk = φµR |φνR' e
ik(R+r µ −R'−rν )

R'
∑

SIESTA supercell 



Many magnitudes require integration of Bloch functions 
over Brillouin zone (1BZ) 

Charge density 

In practice: electronic wave functions at k-points that are very close 
together will be almost identical  ⇒  

It is possible to represent electronic wave functions over a region of    
k-space by the wave function at a single k-point.  

Band structure energy 

In principle: we should know the eigenvalues and/or eigenvectors 
at all the k-points in the first BZ 



Essential for: 
Small cells 

Real space  ↔  Reciprocal space 

Metals Magnetic systems 

Good description of the Bloch states 
at the Fermi level 

k-points Sampling 

Large cells: Γ point  

k = (0,0,0) 



Fermi surface sampling for metallic systems 

The determination of the Fermi level might be delicate for metallic systems 

Slightly different choices of k-points can lead to 
bands entering or exiting the sum, depending if a 

given eigenvalue is above or below the Fermi level. 

Band structure of bulk Al 

For this k-point, three 
bands are occupied 

For this k-point, two 
bands are occupied 

For this k-point, one 
band is occupied 

For a sufficiently dense Brillouin zone sampling, this should not be a problem 



K-point sampling 

First Brillouin Zone 

Regular k-grid 

Inequivalent 
points 

Monkhorst-Pack 

Δk  ⇒  lc=π/Δk 



How to set up the k-point sampling in Siesta 

kgrid_cutoff 
kgrid_cutoff         10.0 Ang 

kgrid_Monkhorst_Pack  

%block kgrid_Monkhorst_Pack 

       4     0    0   0.5 

0     4    0   0.5  

0     0    4   0.5 

%endblock kgrid_Monkhorst_Pack 

A real-space radius that plays a role 
equivalent to the plane-wave cutoff 
in real space grids 

(Moreno and Soler 92) 

The origin of the k-grid might be 
displaced to reduce the number of 
inequivalent k-points 

Variables that control the fineness of the grid 



Comparing energies of structures having different 
symmetries: take care of BZ samplings 

The BZ sampling of all the structures must be sampled with the same accuracy 

Since for unit cells of different shapes it is not possible to choose exactly 
the same k-point sampling, a usual strategy is to try and maintain the  

same density of k-points 



Once SCF has been achieved, we compute the bands along 
the high symmetry points in the First-Brillouin zone 

New variables to plot the band structure 

First-Brillouin zone of a FCC , 
with the high symmetry points  



Three dimensional grid to compute                            
Hartree, exchange correlation and neutral atom potentials   

Find all the atomic orbitals that do not vanish at a given grid point  

(in practice, interpolate the radial part from numerical tables) 

Once the density is known, we compute the potentials EVERYTHING O(N) 



Once the hamiltonian and the overlap matrices are build, 
we have to solve the Schrodinger equation 

= 

N × N N × N N × 1 N × 1 

Order-N Order-N3 

Minimization of an energy functional 

Not valid for metals or “dirty” gap systems 

Standard diagonalization techniques 

Both eigenvectors and eigenvalues available 

N  (# atoms) 

CPU 
load 

~ 100 

Early 

90’s 

~ N 

~ N3 


