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Solving:  Basis set

 density matrix

Expand in terms of a finite 
set of basis functions
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Basis sets
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  Plane waves

 Atomic orbitals

(There are more…)
! 

"G(r) = N eG#r



Plane wave methods
 (depend on pseudopotentials)

M. Payne et al., Rev. Mod. Phys.  64, 1045 (1992)

ADVANTAGES
• Very extended among physicists

• Conceptually simple (Fourier transforms)

• Asymptotically complete

• Allow systematic convergence

• Spatially unbiased (no dependence on the
atomic positions)

• “Easy” to implement (FFT)

DISADVANTAGES
• Not suited to represent any function in
particular

• Hundreths of wave functions per atom to
achieve a good accuracy

• Intrinsic inadequacy for Order-N methods
(extended over the whole system)

• Vacuum costs the same as matter

• Hard to converge for tight orbitals (3d …)



ADVANTAGES
• Very efficient (number of basis functions
needed is usually very small).

• Large reduction of CPU time and memory

• Straightforward physical interpretation
(population analysis, projected density of
states,…)

• Vacuum (almost) for free

• They can achieve very high accuracies…

Atomic orbitals (or atomic-like)

DISADVANTAGES
• …Lack of systematic for convergence
(not unique way of enlarge the basis set)

• Human and computational effort
searching for a good basis set before
facing a realistic project.

• Depend on the atomic position (Pulay
terms appearing in the forces).



Atomic Orbitals: different
representations

- Gaussian based + QC machinery

G. Scuseria  (GAUSSIAN),
M. Head-Gordon (Q-CHEM)
R. Orlando, R. Dovesi (CRYSTAL)
J. Hutter (CP2K)

- Slater type orbitals
Amsterdam Density Functional

- Numerical atomic orbitals (NAO)

 SIESTA
 S. Kenny &. A Horsfield (PLATO)

T. Ozaki (OpenMX)
 O. Sankey (FIREBALL)



Finite-support atomic orbitals as basis
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f        Strictly localised

       (zero beyond cut-off radius)



SIESTA basis sets
The only requirements:

1.

2.  Finite support

They can be:
• As many as you want (both l-channels and z’s)
• Of any (radial) shape
• Of any cutoff radius
• Centred anywhere (not necessarily on atoms)



SIESTA basis sets
The only requirements:

1.

2.  Finite support

They can be:
• As many as you want (both l-channels and z’s)
• Of any (radial) shape
• Of any cutoff radius
• Centred anywhere (not necessarily on atoms)

There are NO SIESTA basis sets !!
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Pedestrian guide to basis sets in Quantum Chemistry

• Minimal basis, or single-z: occupied states (fully or partly) in
the free atom

• Radial flexibility: multiple zeta (and diffuse orbitals)
• Angular flexibility: “polarisation” orbitals

e.g.

C:  Minimal (for the valence): 2s, 2p (2px, 2py, 2pz)
Doble-z: two orbitals with different radial shapes for each of
the above
Polarisation: add a 3d shell to polarise the 2p shell.

Fe: Minimal: 3d, 4s. Polarisation: 4p to polarise 4s. (4f for 3d)



How to get basis sets for Siesta

Choice of how many, cutoff radii, and where, made by user.

Radial shapes can also be introduced by user
(Basis type: “user”; a file with a table of values for r (discretised)

Siesta also offers the possibility of generating basis sets:
• Based on numerical solution of KS DFT on the pseudo-

atom + modifications
• Quite tunable
• Depends on parameters that need to be defined by user



Starting: Minimal basis

Solution of KS-DFT on pseudo-atom,
under an added confinement potential

FIREBALLS  O. F. Sankey & D. J. Niklewski, Phys. Rev. B  40, 3979 (1989)



Hard confining potentials

Fireballs
O. F. Sankey & D. J. Niklewski,
Phys. Rev. B  40, 3979 (1989)

BUT:
A different cut-off radius for
each orbital

A single parameter

   Energy shift

Convergence vs Energy shift of
Bond lengths           Bond energies

E. Artacho et al. Phys. Stat. Solidi (b) 215, 809 (1999)



Soft confining potentials
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• Better basis, variationally, & other results
• Removes the discontinuity in the derivative
 J. Junquera, O. Paz, D. Sanchez-Portal & E. Artacho, Phys. Rev. B, 64, 235111 (2001)
 E. Anglada, J. M. Soler, J. Junquera & E. Artacho, Phys. Rev. B 66, 205101 (2002)



Multiple-zeta

E. Artacho et al. , Phys. Stat. Solidi (b) 215, 809 (1999).



Polarization

E. Artacho et al. , Phys. Stat. Solidi (b) 215, 809 (1999).



Schemes to generate multiple-ζ basis sets
Use pseudopotential eigenfunctions with increasing number of nodes

T. Ozaki et al., Phys. Rev. B 69, 195113 (2004)

http://www.openmx-square.org/

Advantages
Orthogonal

Asymptotically complete

Disadvantages
Excited states of the
pseudopotentials, usually unbound

Efficient depends on localization radii

Availables in Siesta:
PAO.BasisType    Nodes



Schemes to generate multiple-ζ basis sets
Chemical hardness:

use derivatives with respect to the charge of the atoms

G. Lippert et al., J. Phys. Chem. 100, 6231 (1996)

http://cp2k.berlios.de/

Advantages
Orthogonal

It does not depend on any
variational parameter

Disadvantages
Range of second-ζ equals the range
of the first-ζ function



Default mechanism to generate multiple- ζ in SIESTA:

“Split-valence” method

The second-ζ function reproduces the tail of the of the first-ζ outside a radius rm



Default mechanism to generate multiple- ζ in SIESTA:

“Split-valence” method

And continuous smoothly towards the origin as

(two parameters: the second-ζ and its first derivative continuous at rm



Default mechanism to generate multiple- ζ in SIESTA:

“Split-valence” method

The same Hilbert space can be expanded if we use the difference, with the
advantage that now the second-ζ vanishes at rm (more efficient)



Default mechanism to generate multiple- ζ in SIESTA:

“Split-valence” method

Finally, the second-ζ is normalized

rm controlled with PAO.SplitNorm (typical value 0.15)



Both split valence and chemical hardness methods
provide similar shapes for the second-ζ function

E. Anglada, J. Junquera, J. M. Soler, E. Artacho,

 Phys. Rev. B 66, 205101 (2002)

Split valence double-ζ has
been orthonormalized to first-ζ
orbital

SV: higher efficiency
(radius of second-ζ can be
restricted to the inner
matching radius)Gaussians

Chemical hardeness

Split valence



Example of adding angular flexibility to an atom
Polarizing the Si basis set

Si atomic configuration:  1s2 2s2 2p6      3s2 3p2

core valence
l = 0 (s)

m = 0

l = 1 (p)

m = -1 m = 0 m = +1

Polarize: add  l = 2 (d) shell
m = -1 m = 0 m = +1m = -2 m = +2

New orbitals directed in
different directions with
respect the original basis



Two different ways of generate
polarization orbitals

E. Artacho et al., Phys. Stat. Sol. (b), 215, 809 (1999)

Perturbative polarization
Apply  a small electric field to the

orbital we want to polarize

E

s s+p

Si 3d

orbitals



Two different ways of generate
polarization orbitals

E. Artacho et al., Phys. Stat. Sol. (b), 215, 809 (1999)

Perturbative polarization
Apply  a small electric field to the

orbital we want to polarize

E

s s+p

Si 3d

orbitals

Atomic polarization
Solve Schrödinger equation for

higher angular momentum

unbound in the free atom ⇒

require short cut offs



Improving the quality of the basis ⇒
more atomic orbitals per atom



Convergence as a function of the size of the basis set:
Bulk Si

Cohesion curves    PW and NAO convergence

Atomic orbitals show nice convergence with respect the size

Polarization orbitals very important for convergence (more than multiple-ζ)

Double-ζ plus polarization equivalent to a PW basis set of 26 Ry



4.635.285.375.345.345.335.234.914.844.72Ec

(eV)

98.8969696979798989689B
(GPa)

5.435.415.385.395.395.395.425.455.465.52a
(Å)

ExpAPWPWTZDPTZPDZPSZPTZDZSZ

SZ = single-ζ

DZ= doble- ζ

TZ=triple- ζ

P=Polarized

DP=Doble-
polarized

PW: Converged Plane Waves (50 Ry)

APW: Augmented Plane Waves

Convergence as a function of the size of the basis set:
Bulk Si

A DZP basis set introduces the same deviations as the
ones due to the DFT or the pseudopotential approaches



Optimization of the parameters that define the basis set:
the Simplex code

Set of parameters

{ },..., crQ!

Isolated atom 
Kohn-Sham Hamiltonian

+
Pseudopotential

Extra charge
Confinement potential

Full DFT calculation
of the system for which

the basis is to be 
optimized

(solid, molecule,...)

Basis set

SIMPLEX

MINIMIZATION

ALGORITHM

ETot = ETot { },..., crQ!



How to introduce the basis set in SIESTA
Effort on defining a systematics with minimum  parameters

If nothing is specified: default

Basis size: PAO.BasisSize DZP

Range of first-zeta: PAO.EnergyShift 0.02 Ry

Second-zeta: PAO.BasisType Split

Range of second-zeta: PAO.SplitNorm 0.15

Confinement: Hard well

Good basis set in terms of accuracy versus efficiency



More global control on the basis with a few input variables:
size and range

Size:

Range of first-zeta: PAO.EnergyShift 0.02 Ry

Range of second-zeta: PAO.SplitNorm 0.15

The larger both values, the more confined the basis functions

Range:

Basis size:

PAO.BasisSize SZ

DZ

SZP

DZP



More specific control on the basis:
the PAO.Basis block



More specific control on the basis:
the PAO.Basis block

These variables calculated from

PAO.EnergyShift and PAO.SplitNorm values

Some variable might be computed automatically



More specific control on the basis:
the PAO.Basis block

Adding polarization orbitals: perturbative polarization



More specific control on the basis:
the PAO.Basis block

Adding polarization orbitals: atomic polarization



More specific control on the basis:
the PAO.Basis block

Soft-confinement potential

V0 in Ry

ri in bohrs



Recap
Numerical Atomic Orbitals

A very efficient basis set

Spetially suitable for Order-N methods

Smooth transition from quick exploratory calculations to 
highly converged

Lack of systematic convergence

Current effort for searching the lost systematics. Efficients
methods for:

Generate multiple-ζ: Split Valence

Generate polarization orbitals: Perturbative polarization

Control the range of the orbitals in abalanced way: Energy Shift

Confine the orbitals: Soft-confinement potential

A DZP basis set, the same deviations as DFT functional or Pseudo


