

Basis sets for SIESTA

Emilio Artacho

Nanogune, Ikerbasque & DIPC, San Sebastian, Spain Cavendish Laboratory, University of Cambridge

Solving: Basis set

Expand in terms of a finite set of basis functions

$$\left\{\phi_{\mu}(\mathbf{r})\right\}$$

$$\left\{\phi_{\mu}(\mathbf{r})\right\}: \qquad \psi_{n}(\mathbf{r}) \approx \sum_{\mu} \phi_{\mu}(\mathbf{r}) c_{\mu,n}$$

$$\hat{h}\psi_{n}(\mathbf{r}) = \varepsilon_{n}\psi_{n}(\mathbf{r}) \implies \sum_{\mu} \left[\hat{h}\,\phi_{\mu}(\mathbf{r})\right]c_{\mu,n} = \varepsilon_{n}\sum_{\mu}\phi_{\mu}(\mathbf{r})\,c_{\mu,n} \implies$$

$$\sum_{\mu} h_{\nu\mu} c_{\mu,n} = \varepsilon_n \sum_{\mu} S_{\nu\mu} c_{\mu,n}$$

$$h_{\nu\mu} = \int \mathrm{d}^3 \mathbf{r} \; \phi_{\nu}^*(\mathbf{r}) \; \hat{h} \phi_{\mu}(\mathbf{r})$$

where

$$S_{\nu\mu} = \int d^3 \mathbf{r} \; \phi_{\nu}^*(\mathbf{r}) \; \phi_{\mu}(\mathbf{r})$$

Solving: Basis set

Expand in terms of a finite set of basis functions

$$\left\{\phi_{\mu}(\mathbf{r})\right\}$$
:

$$\psi_n(\mathbf{r}) \approx \sum_{\mu} \phi_{\mu}(\mathbf{r}) c_{\mu,n}$$

$$\rho(\mathbf{r}) = \sum_{n}^{occ} |\psi_{n}(\mathbf{r})|^{2} = \sum_{n}^{occ} \psi_{n}^{*}(\mathbf{r}) \psi_{n}(\mathbf{r}) = \sum_{\mu,\nu} \sum_{n}^{occ} \phi_{\mu}^{*}(\mathbf{r}) c_{\mu,n}^{*} \phi_{\nu}(\mathbf{r}) c_{\nu,n} =$$

$$= \sum_{\mu,\nu} \phi_{\mu}^{*}(\mathbf{r}) \phi_{\nu}(\mathbf{r}) \sum_{n}^{occ} c_{\mu,n}^{*} c_{\nu,n} = \sum_{\mu,\nu} \phi_{\mu}^{*}(\mathbf{r}) \phi_{\nu}(\mathbf{r}) \rho_{\mu\nu}$$

$$= \sum_{\mu,\nu} \phi_{\mu}^{*}(\mathbf{r}) \phi_{\nu}(\mathbf{r}) \rho_{\mu\nu}$$

Key matrices

$$h_{\nu\mu} \equiv \int d^3 \mathbf{r} \; \phi_{\nu}^*(\mathbf{r}) \; \hat{h} \phi_{\mu}(\mathbf{r})$$

$$S_{\nu\mu} \equiv \int d^3 \mathbf{r} \; \phi_{\nu}^*(\mathbf{r}) \; \phi_{\mu}(\mathbf{r})$$

$$\rho_{\mu\nu} \equiv \sum_{n}^{occ} c_{\mu,n}^* c_{\nu,n}$$

Basis sets

Plane wave methods

$$\psi_{i,\vec{k}}(\vec{r}) = \sum_{\vec{g}} c_{i,\vec{g}} \left[\frac{1}{\sqrt{\Omega}} e^{i(\vec{k}+\vec{g})\cdot\vec{r}} \right]$$

ADVANTAGES

- Very extended among physicists
- Conceptually simple (Fourier transforms)
- Asymptotically complete
- Allow systematic convergence
- Spatially unbiased (no dependence on the atomic positions)
- "Easy" to implement (FFT)

DISADVANTAGES

- Not suited to represent any function in particular
- Hundreths of wave functions per atom to achieve a good accuracy
- Intrinsic inadequacy for Order-N methods (extended over the whole system)
- Vacuum costs the same as matter
- Hard to converge for tight orbitals (3d ...)

Atomic orbitals (or atomic-like)

$$\phi_{Ilmn}\left(\vec{r}\right) = R_{Iln}\left(\left|\vec{r}_{I}\right|\right) Y_{lm}\left(\hat{r}_{I}\right)$$

ADVANTAGES

- Very efficient (number of basis functions needed is usually very small).
- Large reduction of CPU time and memory
- Straightforward physical interpretation (population analysis, projected density of states,...)
- Vacuum (almost) for free
- They can achieve very high accuracies...

DISADVANTAGES

- ...Lack of systematic for convergence (not unique way of enlarge the basis set)
- Human and computational effort searching for a good basis set before facing a realistic project.
- Depend on the atomic position (Pulay terms appearing in the forces).

Atomic Orbitals: different representations

- Gaussian based + QC machinery
 - G. Scuseria (GAUSSIAN),
 - M. Head-Gordon (Q-CHEM)
 - R. Orlando, R. Dovesi (CRYSTAL)
 - J. Hutter (CP2K)
- Slater type orbitals

Amsterdam Density Functional

- Numerical atomic orbitals (NAO)

SIESTA

- S. Kenny &. A Horsfield (PLATO)
- T. Ozaki (OpenMX)
- O. Sankey (FIREBALL)

Finite-support atomic orbitals as basis

Strictly localised (zero beyond cut-off radius)

SIESTA basis sets

The only requirements:

1.
$$\phi_{Ilmn}(\vec{r}) = R_{Iln}(|\vec{r}_I|) Y_{lm}(\hat{r}_I)$$

2. Finite support

They can be:

- As many as you want (both I-channels and z's)
- Of any (radial) shape
- Of any cutoff radius
- Centred anywhere (not necessarily on atoms)

SIESTA basis sets

The only requirements:

1.
$$\phi_{Ilmn}(\vec{r}) = R_{Iln}(|\vec{r}_I|) Y_{lm}(\hat{r}_I)$$

2. Finite support

They can be:

- As many as you want (both I-channels and z's)
- Of any (radial) shape
- Of any cutoff radius
- Centred anywhere (not necessarily on atoms)

There are NO SIESTA basis sets !!

References

phys. stat. sol. (b) 215, 809 (1999)

Subject classification: 71.15.Mb; 71.15.Fv; 71.24.+q; S1.3; S5; S5.11

Linear-Scaling ab-initio Calculations for Large and Complex Systems

E. ARTACHO¹) (a), D. SÁNCHEZ-PORTAL (b), P. ORDEJÓN (c), A. GARCÍA (d), and J. M. SOLER (e)

PHYSICAL REVIEW B, VOLUME 64, 235111

Numerical atomic orbitals for linear-scaling calculations

Javier Junquera, Oscar Paz, Daniel Sánchez-Portal, 2,3 and Emilio Artacho4

PHYSICAL REVIEW B 66, 205101 (2002)

Systematic generation of finite-range atomic basis sets for linear-scaling calculations

Eduardo Anglada, 1,2 José M. Soler, 1 Javier Junquera, 3 and Emilio Artacho 4

Pedestrian guide to basis sets in Quantum Chemistry

- Minimal basis, or single-z: occupied states (fully or partly) in the free atom
- Radial flexibility: multiple zeta (and diffuse orbitals)
- Angular flexibility: "polarisation" orbitals

e.g.

C: Minimal (for the valence): 2s, 2p ($2p_x$, $2p_y$, $2p_z$)

Doble-z: two orbitals with different radial shapes for each of the above

Polarisation: add a 3d shell to polarise the 2p shell.

Fe: Minimal: 3d, 4s. Polarisation: 4p to polarise 4s. (4f for 3d)

How to get basis sets for Siesta

Choice of how many, cutoff radii, and where, made by user.

Radial shapes can also be introduced by user (Basis type: "user"; a file with a table of values for r (discretised)

Siesta also offers the possibility of generating basis sets:

- Based on numerical solution of KS DFT on the pseudoatom + modifications
- Quite tunable
- Depends on parameters that need to be defined by user

Starting: Minimal basis

Solution of KS-DFT on pseudo-atom, under an added confinement potential

Hard confining potentials

Fireballs

O. F. Sankey & D. J. Niklewski, *Phys. Rev. B* 40, 3979 (1989)

BUT:

A different cut-off radius for each orbital

A single parameter

Energy shift

E. Artacho et al. *Phys. Stat. Solidi (b) 215, 809 (1999)*

Convergence vs Energy shift of Bond lengths Bond energies

Soft confining potentials

- Better basis, variationally, & other results
- Removes the discontinuity in the derivative
- J. Junquera, O. Paz, D. Sanchez-Portal & E. Artacho, *Phys. Rev. B*, **64**, 235111 (2001) E. Anglada, J. M. Soler, J. Junquera & F. Artacho, *Phys. Rev. B* **66**, 205101 (2002)

Multiple-zeta

E. Artacho et al., Phys. Stat. Solidi (b) 215, 809 (1999).

Polarization

E. Artacho et al., Phys. Stat. Solidi (b) 215, 809 (1999).

Schemes to generate multiple- ζ basis sets Use pseudopotential eigenfunctions with increasing number of nodes

Advantages

Orthogonal

Asymptotically complete

Disadvantages

Excited states of the pseudopotentials, usually unbound

Efficient depends on localization rac

T. Ozaki et al., Phys. Rev. B 69, 195113 (2004)

http://www.openmx-square.org/

Availables in Siesta:

PAO.BasisType Nodes

Schemes to generate multiple- ζ basis sets Chemical hardness: use derivatives with respect to the charge of the atoms

Advantages

Orthogonal

It does not depend on any variational parameter

Disadvantages

Range of second- ζ equals the range of the first- ζ function

G. Lippert *et al.*, J. Phys. Chem. 100, 6231 (1996)

http://cp2k.berlios.de/

The second- ζ function reproduces the tail of the of the first- ζ outside a radius r_m

And continuous smoothly towards the origin as

$$r^l\left(a_l-b_lr^2\right)$$

(two parameters: the second- ζ and its first derivative continuous at r_m

The same Hilbert space can be expanded if we use the difference, with the advantage that now the second- ζ vanishes at r_m (more efficient)

"Split-valence" method

Finally, the second- ζ is normalized

 r_m controlled with PAO.SplitNorm (typical value 0.15)

Both split valence and chemical hardness methods provide similar shapes for the second-ζ function

Split valence double-ζ has been orthonormalized to firs orbital

SV: higher efficiency (radius of second-ζ can be restricted to the inner matching radius)

E. Anglada, J. Junquera, J. M. Soler, E. Artacho, Phys. Rev. B 66, 205101 (2002)

Example of adding angular flexibility to an atom Polarizing the Si basis set

Si atomic configuration: 1s² 2s² 2p⁶

 $3s^2 3p^2$

core

valence

$$l=0$$
 (s)

$$l=1$$
 (p)

$$m = 0$$

$$m = -1$$

$$m = 0$$

$$m =$$

Polarize: add l = 2 (d) shell

$$m = -2$$

$$m = -1$$

$$m = 0$$

$$m = -1$$
 $m = 0$ $m = +1$

$$m = +2$$

New orbitals directed in different directions with respect the original basi

Two different ways of generate polarization orbitals

Perturbative polarization

Apply a small electric field to the orbital we want to polarize

Si 3d orbitals

Two different ways of generate polarization orbitals

Perturbative polarization

Apply a small electric field to the orbital we want to polarize

s s+p

Atomic polarization

Solve Schrödinger equation for higher angular momentum

unbound in the free atom ⇒ require short cut offs

Si 3d orbitals

Improving the quality of the basis ⇒ more atomic orbitals per atom

Atom	Valence	SZ		I	DΖ	P		
	configuration							
		# orbita	$ls\ symmetry$	# orbitals	\mathbf{s} \mathbf{s}	# orbitals	symmetry	
Si	$3s^2 \ 3p^2$	1	s	2	s	1	d_{xy}	
		1	p_x	2	p_x	1	d_{yz}	
		1	p_y	2	p_y	1	d_{zx}	
		1	p_z	2	p_z	1	$egin{array}{c} d_{zx} \ d_{x^2-y^2} \ d_{3z^2-r^2} \end{array}$	
						1	$d_{3z^2-r^2}$	
	Total	4		8		(DZ+P) 13		

Atom	Valence						
	configuration						
		# orbita	ls symmetry	# orbitals	symmetry	# orbitals	symmetry
Fe	$4s^2 \ 3d^6$	1	s	2	s	1	p_x
		1	d_{xy}	2	d_{xy}	1	p_y
		1	d_{yz}	2	$egin{aligned} d_{xy} \ d_{yz} \end{aligned}$	1	p_{z}
		1	d_{zx}	2	d_{zx}		
		1	$rac{d_{x^2-y^2}}{d_{3z^2-r^2}}$	2	$egin{array}{c} d_{zx} \ d_{x^2-y^2} \ d_{3z^2-r^2} \end{array}$		
		1	$d_{3z^2-r^2}$	2	$d_{3z^2-r^2}$		
	Total	6		12		(DZ+P) 15	

Convergence as a function of the size of the basis se

Cohesion curves

PW and NAO convergence

Atomic orbitals show nice convergence with respect the size

Polarization orbitals very important for convergence (more than multiple-ζ)

Double-8 plus polarization equivalent to a PW basis set of 26 Ry

Convergence as a function of the size of the basis se Bulk Si

	SZ	DZ	TZ	SZP	DZP	TZP	TZDP	PW	APW	Ех
a (Å)	5.52	5.46	5.45	5.42	5.39	5.39	5.39	5.38	5.41	5.4
B (GPa)	89	96	98	98	97	97	96	96	96	98
E _c (eV)	4.72	4.84	4.91	5.23	5.33	5.34	5.34	5.37	5.28	4.6

A DZP basis set introduces the same deviations as the ones due to the DFT or the pseudopotential approaches

SZ = single-ζ

P=Polarized

PW: Converged Plane Waves (50 Ry)

DZ= doble- ζ

DP=Doble-

APW: Augmented Plane Waves

T7=triple- 5

polarized

Optimization of the parameters that define the basis set: the Simplex code

$$\{\delta Q, r_c, \ldots\}$$

$$E_{Tot} = E_{Tot} \quad \{\delta Q, r_c, \ldots\}$$

Isolated atom
Kohn-Sham Hamiltonian

+

Pseudopotential
Extra charge
Confinement potential

SIMPLEX
MINIMIZATION
ALGORITHM

Full DFT calculation of the system for which the basis is to be optimized (solid, molecule,...)

Basis set

How to introduce the basis set in SIESTA Effort on defining a systematics with minimum parameters

If nothing is specified: default

Basis size: PAO.BasisSize DZP

Range of first-zeta: PAO.EnergyShift 0.02 Ry

Second-zeta: PAO.BasisType Split

Range of second-zeta: PAO.SplitNorm 0.15

Confinement: Hard well

Good basis set in terms of accuracy versus efficiency

More global control on the basis with a few input variables size and range

Size:

Basis size:

PAO.BasisSize SZ

DZ

SZP

DZP

Range:

Range of first-zeta: PAO.EnergyShift 0.02 Ry

Range of second-zeta: PAO.SplitNorm 0.15

The larger both values, the more confined the basis functions

```
%block PAO.Basis  # Define Basis set

H    1 +0.25  # Species label, number of 1-shells, char
n=1 0 2  # n, l, Nzeta
5.000    3.000  # rc (first-zeta), rm (second-zeta)
1.000    1.000  # scaling factors
%endblock PAO.Basis
```

Some variable might be computed automatically

These variables calculated from PAO.EnergyShift and PAO.SplitNorm values

Adding polarization orbitals: perturbative polarization

```
%block PAO.Basis
                             # Define Basis set
H
      1
          +0.25
                             # Species label, number of 1-shells, char
          2 P
n=1 0
                             # n, l, Nzeta, Polarization, NzetaPol
             3.000
                             # rc (first-zeta), rm (second-zeta)
   5.000
                             # scaling factors
   1.000
             1.000
%endblock PAO.Basis
```

Adding polarization orbitals: atomic polarization

```
%block PAO.Basis
                            # Define Basis set
          +0.25
                            # Species label, number of 1-shells, char
n=1 0 2
                            # n, l, Nzeta
                            # rc (first-zeta), rm (second-zeta)
  5.000
             3.000
  1.000
             1.000
                            # scaling factors
n=2 1 1
                            # n, l, Nzeta
  5.000
                            # rc (first-zeta)
                            # scaling factors
   1.000
%endblock PAO.Basis
```

Soft-confinement potential

```
%block PAO.Basis  # Define Basis set

H    1 +0.25  # Species label, number of 1-shells, charge
n=1    0    2 E 150.00 4.5  # n, l, Nzeta, flag soft-conf, prefactor, inner
    5.000    3.000  # rc (first-zeta), rm (second-zeta)
    1.000    1.000  # scaling factors
%endblock PAO.Basis
```

$$V\left(r\right) = V_0 \frac{e^{-\frac{r_c - r_i}{r - r_i}}}{r_c - r}$$

 V_0 in Ry

r. in bohrs

Recap

Numerical Atomic Orbitals

A very efficient basis set

Spetially suitable for Order-N methods

Smooth transition from quick exploratory calculations to highly converged

Lack of systematic convergence

Current effort for searching the lost systematics. Efficients methods for:

Generate multiple-ζ: Split Valence

Generate polarization orbitals: Perturbative polarization

Control the range of the orbitals in abalanced way: Energy Shift

Confine the orbitals: Soft-confinement potential

A DZP basis set, the same deviations as DFT functional or Pseudo