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Atomic calculation using DFT:
Solving the Schrodinger-like equation

One particle Kohn-Sham equations
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Difficulty: how to deal accurately with both
the core and valence electrons

First neighbour  Second neighbour
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Difficulty: how to deal accurately with both
the core and valence electrons

First neighbour  Second neighbour
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Core eigenvalues are much deeper than
valence eigenvalues

/Sp (-4.18) Val
3s 5-10.83{ alence

2p (-95.63
25 (-139.08)

> Core

1s (-1773.77)

Atomic Si




Core wavefunctions are very
localized around the nuclei

/

3p (-4.18)

3s (-10.83
2p %-95.63{

28 (-139.08)

1s (-1773.77)

Atomic Si




Core wavefunctions are very
localized around the nuclei

/ 3p (-4.18)
3S %-10.83;
2p (-95.63
2s (-139.08)

Core electrons...
highly localized

18 (-1773.77)
very depth energy

Atomic Si ... are chemically inert



Core electrons are chemically inert

All electron calculation for an isolated N atom

Core charge density Valence charge density
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Core electrons are chemically inert

All electron calculation for an isolated N atom

Core charge density Valence charge density
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— Neutral configuration: 15”25 2p ?

— Ionic configuration +1: 1s° 25° 2p2

— Neutral configuration: 15 25 2p3

— Ionic configuration +1: 1s° 25° 2p2

I
o
I
|
w
o
I
|

.
o
I
|
D
o
I
|

g
o
I
]
:d
o
I
l

“An r2) x Core charge density (electrons /bohr)

“Amn rz) x Valence charge density (electrons /bohr)

I L | L
1.0 2.0 3.0 4.0 5.0

<
)

o

<
e

o=

o

I 1 I 1 | I 1 1
0.25 0.50 0.75 1.00 1.25 1.50

distance from the nuclei (bohr) distance from the nuclei (bohr)




Core electrons are chemically inert

All electron calculation for an isolated N atom

Core charge density Valence charge density
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Core electrons are chemically inert

All electron calculation for an isolated N atom

Core charge density Valence charge density
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The core charge density remains Although there are drastic modifications in
unperturbed the valence charge density

Peak due to the 2s all-electron orbitals of N,
(they have a node to be ortogonal with the 1s)




Core electrons are chemically inert

All electron calculation for an isolated Si atom

Angularly integrated core and valence charge densities

— Neutral configuration: 25" 25 2p6 35 3p 2
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Core electrons are chemically inert

All electron calculation for an isolated Si atom

Angularly integrated core and valence charge densities

— Neutral configuration: 282 282 2p6 382 3p 2

— JIonic configuration +1: 15> 25 2p6 35> 3pl
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Core electrons are chemically inert

All electron calculation for an isolated Si atom

Angularly integrated core and valence charge densities

— Neutral configuration: 25" 25 2p6 35 3p 2
— JIonic configuration +1: 15> 25 2p6 35 3p1

— Ionic configuration +2: 15> 25° 2p6 357 3pO
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Core electrons are chemically inert

All electron calculation for an isolated Si atom

Angularly integrated core and valence charge densities

Neutral configuration: 25" 25 2p6 35 3p 2
ITonic configuration +1: 15> 25 2p6 35 3p1
Ionic configuration +2: 15> 25° 2p6 357 3pO

Ionic configuration +3: 1s° 25 2p6 35’ 3p0
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Valence wave functions must be orthogonal
to the core wave functions

/

3p (-4.18)

3s (-10.83
2p %-95.63{

25 (-139.08)

Core electrons...

highly localized
18 (-1773.77)

very depth energy

Atomic Si ... are chemically inert




Fourier expansion of a valence wave function
has a great contribution of short-wave length

To get a good approximation we would have
to use a large number of plane waves.




Pseudopotential idea:

Core electrons are chemically inert

(only valence electrons involved in bonding)

Core electrons make the calculation more expensive

more electrons to deal with

orthogonality with valence = poor convergence in PW
Core electrons main effect: screen nuclear potential

Idea:
Ignore the dynamics of the core electrons (freeze them)

And replace their effects by an effective potential




The nodes are imposed by orthogonality
to the core states

{ core region




Idea, eliminate the core electrons by
ironing out the nodes




Ab-initio pseudopotential method:
fit the valence properties calculated from the atom




List of requirements for a good
norm-conserving pseudopotential:

D. R. Hamann et al., Phys. Rev. Lett. 43, 1494 (1979)

Choose an atomic reference configuration Si: 1s?2s?2p°®  3s? 3p?

Y h 4
core valence

1. All electron and pseudo valence eigenvalues agree
for the chosen reference configuration

Energy (eV)

All electron Pseudopotential

€3p|-4.17




List of requirements for a good
norm-conserving pseudopotential:

D. R. Hamann et al., Phys. Rev. Lett. 43, 1494 (1979)

Choose an atomic reference configuration Si: 1s22s22p% 3s2 3p?
H_J H_I

core valence

2. All electron and pseudo valence wavefunctions agree beyond
a chosen cutoff radius R, (might be different for each shell)




List of requirements for a good
norm-conserving pseudopotential:

D. R. Hamann et al., Phys. Rev. Lett. 43, 1494 (1979)

Choose an atomic reference configuration Si: 1s?2s?2p°®  3s? 3p?

Y h 4
core valence

3. The logarithmic derivatives of the all-electron and pseudowave
functions agree at R,

/

Dife,r) = r ST = p L (e, )

wl(g,fl")




List of requirements for a good
norm-conserving pseudopotential:

D. R. Hamann et al., Phys. Rev. Lett. 43, 1494 (1979)

Choose an atomic reference configuration Si: 1s?2s?2p°®  3s? 3p?

Y h 4
core valence

4. The integrals from 0 to r of the real and pseudo charge densities
agree for r > R, for each valence state

Re
Q= [ drr? [t (r)f

Q, is the same for /S as for the all electron radial orbital y,

J

*Total charge in the core region is correct

‘Normalized pseudoorbital is equal to the true orbital outside of R,




List of requirements for a good
norm-conserving pseudopotential:

D. R. Hamann et al., Phys. Rev. Lett. 43, 1494 (1979)

Choose an atomic reference configuration Si: 1s?2s?2p°®  3s? 3p?

Y h 4
core valence

5. The first energy derivative of the logarithmic derivatives of the
all-electron and pseudo wave functions agrees at R

Central point due to Hamann, Schluter and Chiang:

Norm conservation [(4)] = (5)

(w>

R
Dl = 4 / P22 dr
0

1R

de dr




Equality of AE and PS energy derivatives of the

logarithmic derivatives essential for transferability
Atomic Si

Bulk Si

/Sp -4.
_— 3s

2-10.83%

2p (-95.63

2s (-139.08)

Energy (eV)
5 b

e
W

1s (-1773.77)

Y
S

If condition 5 is satisfied, the change in the eigenvalues to
linear order in the change in the potential is reproduced



Generation of /-dependent
norm-conserving pseudopotential

Choose an atomic reference configuration, i.e., a given distribution of
electrons in the atomic energy levels (degree of freedom)




Generation of /-dependent norm-conserving pseudo:
Step 1, choosing the reference configuration

Question: how to choose the electronic configuration of the isolated atom
(the reference atomic configuration)
so that the pseudopotential remains useful in molecular systems and solids

(the target system)

The reference configuration is arbitrary, the user has a degree of freedom here

If the pseudopotential is transferable enough, the choice is not so critical,
but transferability tests are mandatory

Transferability is expected to work best for electronic configurations close
to the reference one, but it is not obvious for rather different configurations
(would a pseudopotential generated for neutral K work well in K*?)




Generation of /-dependent norm-conserving pseudo:
Step 1, choosing the reference configuration

Standard first choice: ground state configuration of the neutral isolated atom

However, states of angular momenta that are unoccupied in the neutral
atom hibridize with the occupied states in the presence of a different
environment, becoming partially occupied.

In these cases, it is necessary to include these angular momenta as
non-local components of the pseudopotential




Generation of /-dependent
norm-conserving pseudopotential

Choose an atomic reference configuration, i.e., a given distribution of
electrons in the atomic energy levels (degree of freedom)

y

Solve the all-electron radial Schrodinger equation for the chosen atomic
reference configuration

1d> I(l+1)
a2 o T Veff[n](r)] Uy (1) = et (7)

Ve[ (r) = Vext (1) + Vitartree ] + Vaeln] = _g + /

n( ) = sum of electronic charges
for occupied states

LG ), dr’ + Vieeln]
=

7 =bare nuclear charge




Generation of /-dependent norm-conserving pseudo:
Step 2, solving the radial wave function

Since, in the isolated atom, the potential is spherically symmetric,
the one electron wave functions can be decoupled as the product of a radial part
times an spherical harmonic

Wt (7) = Ui 0,0) = Roa(r)Yin(0.0) = L1t (r)¥i(6.)

The radial equation (in atomic units) reads

1 d° [(1+1)
212

Varlnl(r) = Vasa(r) + Vi) + Vel = = + [

+Vialal (1) Roa(r) = vl

’rL(T )/’d’)"/ X ch [n]

r—7r

If, as in many textbooks, we redefine the radial part of the R (7“) . lu (7“)
wave function, to simplify the differential operator it B it

1 d? N [(I+1)
212

+ Vet 1] (7”)] Uni(7") = Enitini(7)




Generation of /-dependent norm-conserving pseudo:
Step 2, solving the radial wave function

1d* I(l+1)
g T T2 T Vere [n] (1) | wpi(r) = etin(r)

The equation has to be solved subject to the following boundary conditions

for r— 0 = Uy (r=0)=0

U (T) — 0 for r — oo

And the radial part of the wave function has to be normalized as

/ 7“2\Rnl(fr)|2d7“:/ Uy (7)|?dr = 1
0 0




Generation of /-dependent
norm-conserving pseudopotential

Choose an atomic reference configuration, i.e., a given distribution of
electrons in the atomic energy levels (degree of freedom)

y

Solve the all-electron radial Schrodinger equation for the chosen atomic
reference configuration

1d> I(l+1)
a2 o T Veff[n](r)] Uy (1) = et (7)

Ve[ (r) = Vext (1) + Vitartree ] + Vaeln] = _g + /

= sum of electronic charges
n( ) for occupied states Z

y

Parametrization of the pseudo-wave functions for r < R _according to
any of the available prescriptions (degree of freedom)

n(r’

), | dr’ + Vieeln]

r—r

=bare nuclear charge




Generation of /-dependent norm-conserving pseudo:
Step 3, parametrization of the pseudowave functions

Independently of the method, two
conditions usually imposed:

-Smooth matching between the all
electron and the pseudo wave function
at the cutoff radius R,

- Conservation of the norm of the
pseudo wave function.

Degree of freedom in the choice of the
flavour of the pseudopotential and R,

Several schemes available in the literature for norm-conserving pseudopotentials
Hamann, Schluter, and Chiang [D. R. Hamann et al., Phys. Rev. Lett. 43, 1494 (1979)]
Kerker [G. P. Kerker, J. Phys. C 13, L189 (1980)]

Troullier-Martins [N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991)]
Rappe-Rabe-Kaxiras-Joannopoulos [A. M. Rappe et. al., Phys. Rev. B 41, 1227 (1990)]




Generation of /-dependent
norm-conserving pseudopotential

Choose an atomic reference configuration, i.e., a given distribution of
electrons in the atomic energy levels (degree of freedom)

y

Solve the all-electron radial Schrodinger equation for the chosen atomic
reference configuration

1d> I(l+1)
a2 o T Veff[n](r)] Uy (1) = et (7)

Ve[ (r) = Vext (1) + Vitartree ] + Vaeln] = _g + /

= sum of electronic charges
n( ) for occupied states Z

L
Parametrization of the pseudo-wave functions for r < R _according to
any of the available prescriptions (degree of freedom)
¥
Invert the radial Schrodinger equation for the screened pseudopotential

n(r’

), | dr’ + Vieeln]

r—r

=bare nuclear charge




Generation of /-dependent norm-conserving pseudo:
Step4 inversion of the radial Schrodinger equation

Search for the Schrodinger-like equation
that would satisfy the pseudo-orbital

I(1+1)

A VES() | () = efS(r)

[(l+1)
92 PS( )—|— ‘/(sc)l( ) PS( ) — <C:lulPS(fr)
d?uy®(r) N [(1+1)
dr? 212
N [(l+1) 1 d?ul®(r)
) =& - oz 2uiS(r)  dr?

+ ‘/(Ecs)l<r) = &l




Generation of /-dependent norm-conserving pseudo:
Step 4, inversion of the radial Schrodinger equation

0.8

Search for the Schrodinger-like equation
that would satisfy the pseudo-orbital

[(I+1) . 1 d?ul®(r)
212 2uiS(r)  dr?

The inversion can always be done because of the nodeless condition

Note that the principal quantum number has droped, because the pseudization
is done for the lowest-lying valence state of each angular momentum

Higher lying valence states of the same angular momentum correspond to
excited states of the pseudopotential




Generation of /-dependent
norm-conserving pseudopotential

Choose an atomic reference configuration, i.e., a given distribution of
electrons in the atomic energy levels (degree of freedom)

y

Solve the all-electron radial Schrodinger equation for the chosen atomic
reference configuration

+ Vg [n](r)] uE(r) = euE(r)

14 . [(I+1)
2 dr? 212

Ve[ (r) = Vext (1) + Vitartree ] + Vaeln] = _g + /

n( ) = sum of electronic charges
for occupied states

nl nl

nr ), dr + Vy.[n]
=

7 =bare nuclear charge

y

Parametrization of the pseudo-wave functions for r < R _according to
any of the available prescriptions (degree of freedom)
¥
Invert the radial Schrodinger equation for the screened pseudopotential
¥

Subtract (unscreen) the Hartree and exchange-correlation potentials




Generation of /-dependent norm-conserving pseudo:
Step 5, unscreening of the pseudopotential

The pseudo-wave function obeys

1d*  I(l+1) PS PS
—5os o+ Vean(n)| w” () = euy>(r)

Where the effective potential is computed in the atom

( . . .
Bare nuclei-valence interaction

| Computed with an atomic charge density

Hartree interacion
core Valence

i natom atom + N otom ‘D

includes
Exchange-correlation interacion | / /
\

Blind to the chemical Extremely dependent
environment on the chemical
environment

In the molecular system or condensed phase, we have to screen the (ion+core)-valence
interaction with the valence charge density computed in the targeted system




Generation of /-dependent norm-conserving pseudo:
Step 5, unscreening of the pseudopotential

In the molecular system or condensed phase, we have to screen the (ion+core)-valence
interaction with the valence charge density computed in the targeted sytem

So, the pseudopotential is finally obtained by subtracting (unscreening) the
Hartree and exchange and correlation potential calculated only for the valence
electrons (with the valence pseudo-wave function)

[ VHartree [nv] — ch ['n,v]

o (1) U L dr — Vie|nw]

=7

Where the pseudo-valence charge density is computed as

lmam

-3 e

=0 m=-—I

Exchange-correlation functional in the DFT all-electron calculation used to
construct the pseudopotential has to be the same as in the target calculation




How to generate a
pseudopotential

40
AE win |=0
PSwinl=0 - 20

o |-
-20
-40
-60
-80

-100
-35 3 25 -2 -15 -1 -05 0 05 1

0.6
0.4
0.2 | :
ob
-0.2 : \ /
04
0.6
0.8 /ﬁ‘ﬂ

-1
0O 05 1 15 2 25 3 35 4

Objectives

Generate a norm-conserving pseudopotential using ATOM




Description of the input file of the ATOM code for a
pseudopotential generation Atitle for the job N 1s*  2s22p>3d° 4P
: - ——
pg = Pseudopotential generation

valence

Flavour of the method to generate the

-%seudoaté)'nalc orbltacl)s. (ghere Troouol(l)ler-Martlg.sg Number of core

and valence
orbitals
Principal
quantum

number Exchange-and correlation functional

ca = Ceperley-Alder (LDA) wi = Wigner (LDA)

hl = Hedin-Lundqvist (LDA) bh = von-Barth-Hedin (LDA)
gl = Gunnarson-Lundqvist (LDA)

pb = Perdew-Burke-Ernzerhof, PBE (GGA)

rv = revPBE (GGA)

rp = RPBE, Hammer, Hansen, Norvskov (GGA)

Angular
quantum
number

Cutoff radii for the

Occupation different shells (in
bohrs) ps = PBEsol (GGA) +s if spin (no relativistic)

(spin up) we = Wu-Cohen (GGA) +r if relativistic
(spin down) bl = BLYP Becke-Lee-Yang-Parr (GGA)
am= AMO05 by Armiento and Mattson (GGA)

vw = van der Waals functional




How to run a pseudopotential generation with ATOM

$ ../../Utils/pg.sh N.tm2.inp )
==> Qutput data in directory N.tm2 Run the script
==> Pseudopotential in N.tm2.vps and N.tm2.psf (and maybe in N.tm2.xml)

$ 1 The pseudopotentials will
S
N.test.inp N.tm2.inp N.tm2.vps be on the same parent

N.tm2 N.tm2.psf N.tm2.xml directory:
.vps (unformatted)
: i: N. tm2 .psf (formatted)

AECHARGE INP PSPOTR! RHO pots.gplot xml (in XML format)
AELOGDO OUT PSPOTR2 SCRPSPOTRO pots.gps

AELOGD1 PSCHARGE PSPOTR3 SCRPSPOTR1 pseudo.gplot

AELOGD2 PSLOGDO PSWFFMT SCRPSPOTR2 pseudo.gps . - -
AELOGD3 PSLOGD1 PSWFNQO SCRPSPOTR3 scrpots.gplot Different output files in a
AEWFNRO PSLOGD2 PSWFNQ1 VPSFMT scrpots.gps new directory (same
AEWFNR1 PSLOGD3 PSWFNQ2 VPSOUT subps.gplot name as the input file
AEWFNR2 PSPOTQO PSWFNQ3 VPSXML subps.gps : .

AEWFNR3 PSPOTQ1 PSWFNRO charge.gplot vcharge.gplot WIthOU.t the AL e
CHARGE PSPOTQ2 PSWFNR1 charge.gps vcharge.gps e)(ten3|on)
FOURIER_AREA PSPOTQ3 PSWFNR2 coreq.gplot vspin.gplot

FOURIER_QMAX PSPOTRO PSWFNR3 coreq.gps vspin.gps

$

An explanation of the different files can be found in
the ATOM User’ s Guide (page 6)




Plotting the all electron and pseudo charge densities

$ gnuplot —persist charge.gplot (To generate a figure on the screen using gnuplot)

$ gnuplot charge.gps (To generate a postscript file with the figure)
The core and the charge densities are angularly integrated (multiplied by 4777)2

o0 o0
/ pal  dr = / Phs eedr = Number valence electrons
0 0

AE core charge The PS and AE valence
A e s charde charge densities are
PS valence charge equal beyond the cutoff
radii

Small peak in the AE
valence charge density
due to orthogonality with
AE core

—
| S
L
o
0
~
2
c
o
|
et
o
@
o
~—
2]
o
=
2
c
Q
©
Q
(@)
| 9
©
N -
(&)




Plotting the all pseudopotenial information
$ gnuplot —persist pseudo.gplot

$ gnuplot pseudo.gps

'AE win I=0
PSwinl=0

AE and PS
yvayefgnqtiops |

15 2 25 3 35

-100 —

I I=0 Ilz’seu&opot Ir

Real space
pseudopotential

-0.6
08 pseudopotential

(To generate a figure on the screen using gnuplot)

(To generate a postscript file with the figure)

40

AE logder 1=0 ——
20 PS logder =0 -~

0
-20
-40
-60

| AE and PS logarithmic |
~ derivatives
35 -3 25 2 15 -1 -05 0 05 1

-80

0.6
0.4
0.2

0

I=0 Plseudopot qI —

The more Fourier

02 components, the
04 harder the

Fourier transformed | pseudopotential

5 10 15

A figure like this for each angular momentum shell in the valence



Plotting the real-space pseudopotentials

$ gnuplot —persist pots.gplot (To generate a figure on the screen using gnuplot)

$ gnuplot pots.gps (To generate a postscript file with the figure)

Beyond the largest cutoff
radius, the pseudopotential

tends to _g
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Plotting the unscreened and screened pseudopoten

$ gnuplot —persist scrpots.gplot (To generate a figure on the screen using gnuplot)

$ gnuplot scrpots.gps (To generate a postscript file with the figure)
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Exploring the output file

ATM Version 3.3 (2008/09/13)
ATM3.3 28-MAR-12 Nitrogen

correlation = ca nonspin-polarized
nuclear charge 7.000000
number of core orbitals 1
number of valence orbitals 4
7.000000
0.000000

electronic charge
ionic charge




Comparing AE and PS eigenvalues
$ grep ‘&v’ OUT

$ grep ’&v’ OUT
ATM3.3 28-MAR-12
2s . .0000 -1.35223895
2p . .0000 -0.53262229
.0000 0.00000000
0.00000000

Nitrogen

-1.35223253
-0.53261661
0.00000000
0.00000000

The AE and PS eigenvalues are not exactly identical because the
pseudopotentials are changed slightly to make them approach their limit tails

faster

Eigenvalues (in Ry)

.72576386
.67454481
.00142446
.00246771

.17006869
.50294491
.00142446
.00246771

36854475

.16757601
.13826878
.13367744

.02041578
.33629169
.09876341
.09548389




Balance between softness and
transferability controlled by R,

Representability by a Accuracy in varying
resonable small environments

number of PW
TRANSFERABILITY

Larger R.: softer pseudo _ R_=1.90 bohr
— R_=1.30 bohr

First guess: last peak of the
all electron wave function

Shorter R_: harder pseudo




How to test a norm-conserving
pseudopotential

$ grep "&d4" 0OUT
ATM3.3 26-NOV-12 N Test -- GS 2s2 2p3
ATM3.3 26-NOV-12 N Test -- 2s1.8 2p3.2
ATM3.3 26-NOV-12 N Test -- 2s1.6 2p3.4
ATM3.3 26-NOV-12 N Test -- 2s2.0 2p3.7 (ionic configuration -0.7)
&d total energy differences in series
&d 1 2 3 4
&d 0.0000
&d 0.1640 0.0000

0.3281 0.1641 0.0000

-0.1815 -0.3455 -0.5096 0.0000

End of series ——-—-* spdfg &d&v

ATM3.3 26-N0OV-12 N Test -- GS 2s2 2p3
ATM3.3 26-NOV-12 N Test -- 2s1.8 2p3.2
ATM3.3 26-NOV-12 N Test -- 2s1.6 2p3.4
ATM3.3 26-NOV-12 N Test -- 2s2.0 2p3.7 (ionic configuration -0.
&d total energy differences in series
&d 1 2 3 4
&d 0.0000
&d 0.1640 0.0000

0.3280 0.1640 0.0000

-0.1815 -0.3454 -0.5094 0.0000

End of series ----* spdfg &d&v

Objectives

Test a norm-conserving pseudopotential using ATOM




Description of the input file of the ATOM code for a

. 2 2 3 0 Af0
pseudopotential test [ | | o N 1s? 252 2p>3d° 4f
z All-electron calculations for a series of N configurations \ J

ae N Test -- GS 2s2 2p3

valence

3.00
N Test -- 2s1.8 2p3.2

320 Concatenations of

N Test -- 2s1.6 2p3.4

00 all electron

2
0 1.60
1 3.40
N Test -- 2s2.0 2p3.7 (ionic configuration -0.7)
ca
0.0

Test

pt N Test -- GS 2s2 2p3
N ca
0.0
2
0 2.00

For each 1 3.00

. . N Test -- 2s1.8 2p3.2
configuration, the ca And

0.0 .
. seudopotential tests
block is the same as o 1o P ; I:h

or an all ejiectiron N Test —- 2s1.6 2p3.4
f Il elect e confiol:rateiosnasmaend in
calculations, replacing X g

2

pt instead of ae 0 1.0 the same order

N Test -- 2s2.0 2p3.7 (ionic configuration -0.7)
ca
0.0




How to run a pseudopotential test with ATOM

../../Utils/pt.sh N.test.inp N.tm2.vps Run the script
=> Output data in directory N.test-N.tm2

First, the name of the input
Second, the name of the
i ;d N.test-N.tm2 pseudopotential in .vps
S
AECHARGE AEWFNR2 ECONF_DIFFS PTCHARGE PTWFNR2 VPSIN pt.gplot vcharge.gps (unformatted) format
AEWFNRO AE_ECONF INP PTWFNRO PT_ECONF charge.gplot pt.gps vspin.gplot

AEWFNR1 CHARGE OUT PTWFNR1 RHO charge.gps vcharge.gplot vspin.gps Different output files in a

new directory

The name of the directory is the concatenation of the name of the
input file and the name of the pseudopotential file, both without
the .inp and the .vps extensions

An explanation of the different files can be found in
the ATOM User’ s Guide (page 6)




How to compare the AE and PS eigenvalues for
different configurations

$ grep ’&v’ OUT | grep s Repeat for
ATM3.3 26-N0V-12 N Test -- GS 2s2 2p3
2s 0.0 2.0000 -1.35223895 4.72576386 -15.36854475 the P, d’ anf f
ATM3.3 26-NOV-12 N Test -- 2s1.8 2p3.2 shells
2s 0. 1.8000 -1.35891385 4.72972423 -15.37523266
ATM3.3 26-N0V-12 N Test -- 2s1.6 2p3.4
0. 1.6000 -1.36547758 4.73353731 -15.38169011
3 26-N0V-12 N Test -- 2s2.0 2p3.7 (ionic configuration -0.7)
0.0 2.0000 -0.81353235 4.49656286 -14.98792667
End of series ----* spdfg &d&v
3 26-N0V-12 N Test -- GS 2s2 2p3
0.0 2.0000 -1.35223540 1.17006955 -8.02041752
3 26-N0V-12 N Test -- 2s1.8 2p3.2
0. 1.8000 -1.35867311 1.17125438 -8.02276479
3
0.
3
0.

Units in Ry

26-N0OV-12 N Test -- 2s1.6 2p3.4
0 1.6000 -1.36497481 1.17239512 -8.02501762
26-N0V-12 N Test -- 2s2.0 2p3.7 (ionic configuration -0.7)
0 2.0000 -0.81324485 1.10746390 -7.88685310
End of series ----* spdfg &d&v

The typical difference should be of around 1 mRyd for a "good" pseudopotential

The real proof of good transferability, remember, can only come from a molecular
or solid-state calculation

Note that the PT levels are labeled starting from principal quantum number 1




How to compare the differences in total energies
between different configurations

All electron

Pseudoatom

$ grep "&d4" OUT

ATM3.3 26-N0V-12
ATM3.3 26-N0V-12
ATM3.3 26-N0V-12
ATM3.3 26-N0V-12

N Test -- GS 2s2 2p3

N Test -- 2s1.8 2p3.2

N Test -- 2s1.6 2p3.4

N Test -- 2s82.0 2p3.7 (ionic configuration -0.7)

&d total energy differences in series

&d 1
&d 0.0000
&d 0.1640 0.
0.3281 0.
-0.1815 -0.
End of series
ATM3.3 26-N0V-12
ATM3.3 26-N0V-12
ATM3.3 26-N0V-12
ATM3.3 26-N0V-12

2 3 4

0000
1641  0.0000
3455 -0.5096  0.0000
---—% spdfg &d&v
N Test -- GS 2s2 2p3
N Test -- 2s1.8 2p3.2
N Test -- 2s1.6 2p3.4
N Test -- 2s2.0 2p3.7 (ionic configuration -0.7)

&d total energy differences in series

&d 1
&d 0.0000
&d 0.1640 0.
0.3280 0.
-0.1815 -0.
End of series

2 3 4

0000

1640  0.0000

3454 -0.5094 0.0000
---—x spdfg &d&v

Cross
excitations
between
different
configurations

The typical difference should be of around 1 mRyd for a “good” pseudopotential




Generation of /-dependent
norm-conserving pseudopotential

Choose an atomic reference configuration, i.e., a given distribution of
electrons in the atomic energy levels (degree of freedom)

v

Solve the all-electron radial Schrodinger equation for the chosen atomic
reference configuration

+ Vg [n](r)] uE(r) = euE(r)

14 . [(I+1)
2 dr? 212

Ve[ (r) = Vext (1) + Vitartree ] + Vaeln] = _g + /

n(r) = sum of electronic charges
for occupied states

nl nl

nr ), dr + Vy.[n]
=

~ =bare nuclear charge

y

Parametrization of the pseudo-wave functions for r < R _according to
any of the available prescriptions (degree of freedom)
[
Invert the radial Schrodinger equation for the screened pseudopotential
[

Subtract (unscreen) the Hartree and exchange-correlation potentials




When there is a significant overlap of core and
valence charge densities: problem with unscreening

The exchange and correlation potential and energy
are not linear functions of the density

Ere[Patom(T)] 7 Eze[Pagom (T)] + Ezc [n;?éﬁce(f'?)]

In cases where the core and valence charge density overlap significantly:
- In systems with few valence electrons (alkali atoms)
- In systems with extended core states

- In transition metals, where the valence 4 bands overlap spatially
with the code s and p electrons

the unscreening procedure as explained before is not fully justified.

vac[ncore (7:») 4+ nvalence (7:»)] _ (ch [ncore (77) i nvalence(f‘)} o ch [nvalence (7:*)]) i %C[nvalence(fﬂ

atom atom atom atom atom atom

— — — —_— - Y
o —— ~

xc potential that appears Since xc is not linear, if core and xc potential that is
in the unscreened valence overlap, the contribution removed in the
potential from valence is not fully canceled unscreening procedure

Then, the screening pseudopotential are dependent on the valence configuration,
a feature highly undesirable since it reduces the transferability of the potential.




When there is a significant overlap of core and
valence charge densities: non-linear core correction

Solution 1: Include non-linear core corrections (NLCC)
S. Louie et al., Phys. Rev. B 26, 1738 (1982)

Step 1: Replace the previous unscreening expression by

VP (r) = / 7 ‘dr, — Vielny + 1]

Step 2: In the actual electronic structure calculations performed with this
pseudopotential, the exchange and correlation distribution is computed from
the full electronic charge, [nv + nc] , instead of the usual valence charge. The
frozen core charge density of isolated atoms is used for 7ic

Step 3: The full core density, with its very high Fourier components, is
impractical to use. However, the core charge has significant effect only where
the core and valence charge densities are of similar magnitude. We can
therefore, replace the full core charge density with a partial core charge
density




When there is a significant overlap of core and
valence charge densities: non-linear core correction

Solution 2: Include non-linear core corrections (NLCC)
Models for the partial core

1. Original one proposed by S. Louie et al. (in ATOM, the default for LDA)

( asin(br)
core ro Parameters a and » determined by the
npartial(r) = 9 continuity of the partial core and its
L n(r), > e first derivative at .

T<Tpc

2. New one that fixes some problems in the generation of GGA pseudos

(.2 (a+br?+cr) :
r-e , T < Tpc Parameters q, b and c determined by

Noortial(T) = 4 the continuity of the partial core and its
nre(r), > The first and second derivatives at

\

r,. has to be chosen such that the valence charge density is negligeable compared to
the core one forr<r,.

Tests show that it might be located where the core charge density is from 1 to 2 times
larger than the valence charge density




How to generate a pseudopotential
with non-linear core corrections

Check whether the non-linear core-corrections are necessary and
how to include them in the pseudopotential




Description of the input file of the ATOM code for a
pseudopotential generation A title for the job

pe = Pseudopotential generation with NLCC

Na 1s? 2s? 2p63s? 3p0 3d° 4f°
W W
valence

Sodium NLCC rcore=1.50

4.0 Flavour of the method to generate the
o peeudogignic ooial (here Jraplier-grips) ANTHANSSS T

and valence
1.00 0.00 )
o.om\ orbitals
0.00 0.00

2.95

Principal
quantum

number Exchange-and correlation functional

ca = Ceperley-Alder (LDA) wi = Wigner (LDA)

hl = Hedin-Lundqvist (LDA) bh = von-Barth-Hedin (LDA)
gl = Gunnarson-Lundqvist (LDA)

pb = Perdew-Burke-Ernzerhof, PBE (GGA)

rv = revPBE (GGA)

rp = RPBE, Hammer, Hansen, Norvskov (GGA)

Angular
quantum
number

Cutoff radii for the
different shells

Occupation (in bohrs)
ps = PBEsol (GGA) +s if spin (no relativistic)

(spin up) we = Wu-Cohen (GGA) +r if relativistic
(spin down) bl = BLYP Becke-Lee-Yang-Parr (GGA)
am= AMO05 by Armiento and Mattson (GGA)

vw = van der Waals functional




Description of the input file of the ATOM code for a
pseudopotential generation B il fram T fels Na 1s? 2s? 2p°3s’ 3p°® 3d° 4f°

pe = Pseudopotential generation with NLCC ' ’

valence

pe Sodium NLCC rcore=1.50
tm2 4.0
Number of core
and valence
orbitals
Principal
quantum

number ]
xc functional

Angular oc radius for the non-linear core correction
quantum Highly recommended to set an explicit value
number If it is zero, negative or blank, the radius is

Cutoff radii for the chosen from rcore_flag

different shells

Occupation in bohrs rcore_flag:
g ( ) At r,. the core charge density equals

(spin up) (rcore_flag)*(valence charge density)

spin down
(sp ) If negative, the full core charge is used

If zero, the sixth number is used




Generate and test a pseudopotential for Na
with and without non-lineal core corrections

$ ../../Utils/pg.sh Na.cc.inp

==> (Qutput data in directory Na.cc

==> Pseudopotential in Na.cc.vps and Na.cc.psf (and maybe in Na.cc.xml)
../../Utils/pg.sh Na.inp
> Output data in directory Na
> Pseudopotential in Na.vps and Na.psf (and maybe in Na.xml)

../../Utils/pt.sh Na.test.inp Na.cc.vps
=> OQutput data in directory Na.test-Na.cc
../../Utils/pt.sh Na.test.inp Na.vps
=> (Qutput data in directory Na.test-Na

See previous examples to understand how to generate and test
norm-conserving pseudopotentials




Check that the transferability has improved
with the non-linear core corrections

$ cd Na.test-Na.cc
$ grep "&d" OUT

ATM3.3 5-DEC-12
ATM3.3 5-DEC-12
ATM3.3 5-DEC-12
ATM3.3 5-DEC-12
&d total energy differences in series

&d
&d
&d

1
0.0000

0.1470 0.
0.3798 0.
0.1553 0.

Sodium
Sodium
Sodium
Sodium

2 3
0000

2327  0.0000
0083 -0.2245

GS 3s1 3p0
3s0.5 3p0
GS 3s0 3p0
GS 3s0 3p1l

4

0.0000

End of series

ATM3.3
ATM3.3
ATM3.3
ATM3.3

5-DEC-12
5-DEC-12
5-DEC-12
5-DEC-12

---—% spdfg &d&v
Sodium GS 3s1 3p0
Sodium 3s0.5 3p0
Sodium GS 3s0 3p0
Sodium GS 3s0 3pl

&d total energy differences in series

&d 1
&d 0.0000

&d 0.1471 0.
0.3809 0.
0.1557 0.

End of series

$ cd ../Na.test-Na
$ grep "&d" OUT

2 3 4

0000

2338  0.0000

0086 -0.2251  0.0000
---—% spdfg &d&v

ATM3.3
ATM3.3
ATM3.3
ATM3.3

5-DEC-12
5-DEC-12
5-DEC-12
5-DEC-12

Sodium
Sodium
Sodium

GS 3s1 3p0
3s0.5 3p0
GS 3s0 3p0

Sodium GS 3s0 3pl

&d total energy differences in series

&d
&d
&d

ATM3.3
ATM3.3
ATM3.3
ATM3.3

1
0.0000

0.1470 0.
0.3798 0.
0.1553 0.

End of series
5-DEC-12
5-DEC-12
5-DEC-12
5-DEC-12

2 3 4

0000

2327  0.0000

0083 -0.2245 0.0000

--——* spdfg &d&v
Sodium GS 3s1 3p0
Sodium 3s0.5 3p0
Sodium GS 3s0 3p0
Sodium GS 3s0 3pl

&d total energy differences in series

&d
&d
&d

1
0.0000
0.1461
0.3687

0.1515 0.

End of series

2 3 4

.0000
.2226  0.0000

0054 -0.2172

0.0000

--——* spdfg &d&v

With non-linear core

corrections

Without non-linear core
corrections




Plotting the core and pseudo-core charge density

$ cd Na.cc
$ gnuplot —persist charge.gplot (To generate a figure on the screen using gnuplot)

$ gnuplot charge.gps (To generate a postscript file with the figure)

!
AE core charge
AE valence charge
PS core charge
PS valence Charge

The overlap between valence
and core charge density is |
important since the valence

charge density is small
(few valence electrons)

L/rpc




When there is a significant overlap of core and
valence charge densities: non-linear core correction

Bulk NaCl (rocksalt structure)

Without core corrections for Na:

Semi metal

With core corrections for Na:

Insulator

J. Hebenstreit and M. Scheffler,
Phys. Rev. B 46, 10134 (1992)




When there is a significant overlap of core and
valence charge densities: non-linear core correction

Solution 2: Include explicitly the extended core orbitals in
the valence (semicore in valence)

Expensive since:
- We have to include explicitly more electrons in the simulation

-The semicore orbitals tend to be very localized and hard, in the
sense that high Fourier components are required




How to generate a pseudopotential
with the semicore in the valence

"0 05 1 15 2 25 3 35 4

Objectives

Check whether semicore states should be explicitly included in the
valence and how it should be done




Description of the input file of the ATOM code for a
pseudopotential generation R\ or (e ol Ba ...5s%4d"% 5p® 6s* 5d° 6p° 4f°

. _ i
pg = Pseudopotential generation CO-e ———
semicore valence

pg Ba with 5s as semicore, 5p in valence
3.00  Flavour of the method to generate the
o Opseud%a;t)omic or(l:))itoals (her% Eroullier-l\/(l)agtins) Number of core

and valence
orbitals
Principal
quantum

number Exchange-and correlation functional

ca = Ceperley-Alder (LDA) wi = Wigner (LDA)

hl = Hedin-Lundqvist (LDA) bh = von-Barth-Hedin (LDA)
gl = Gunnarson-Lundqvist (LDA)

pb = Perdew-Burke-Ernzerhof, PBE (GGA)

rv = revPBE (GGA)

rp = RPBE, Hammer, Hansen, Norvskov (GGA)

Angular
quantum
number

Cutoff radii for the
different shells

Occupation (in bohrs)
ps = PBEsol (GGA) +s if spin (no relativistic)

(spin up) we = Wu-Cohen (GGA) +r if relativistic
(spin down) bl = BLYP Becke-Lee-Yang-Parr (GGA)
am= AMO05 by Armiento and Mattson (GGA)

vw = van der Waals functional




Generate and test a pseudopotential for Ba with the
semicore explicitly included in the valence

../../Utils/pg.sh Ba.semicore.inp
==> Qutput data in directory Ba.semicore
==> Pseudopotential in Ba.semicore.vps and Ba.semicore.psf (and maybe in Ba.semicore.xml)

../../Utils/pt.sh Ba.test.inp Ba.semicore.vps
==> Qutput data in directory Ba.test-Ba.semicore

See previous examples to understand how to generate and test
norm-conserving pseudopotentials




Generate and test a pseudopotential for Ba with the
semicore explicitly included in the valence

Both the 55 and 5p states are normally thought of as “core states”

But now, they have been included in the valence.

As the program can only deal with one pseudized state per angular
momentum channel, this implies the elimination of the “genuinely valence”
6s state from the calculation

In other words, the pseudopotential has been generated for an ion

$ cd Ba.semicore
$ more OUT

Ba pseudopotential generation

relativistic!!
correlation = ca spin-polarized

56.000000
14
7
54.000000
2.000000

nuclear charge

number of core orbitals
number of valence orbitals
electronic charge

ionic charge




The semicore orbitals are very extended.
5s and 5p orbitals overlap strongly with 44 orbitals

The reason why the semicore orbitals have to be included in the
valence is that they are very extended, and overlap a lot with the
valence states

This can be seen plotting the semicore orbitals

$ gnuplot —persist pseudo.gplot (To generate a figure on the screen using gnuplot)

$ gnuplot pseudo.gps (To generate a postscript file with the figure)

AE win |=1




Generate and test a pseudopotential for Ba with the
semicore explicitly included in the valence

The pseudopotential constructed is not expected to reproduce
perfectly the 65 and 6p states, as their eigenvalues are more than 1

eV from those of the reference states 5s and 5p, but the actual results
are not bad at all.

$ cd ..
$ cd Ba.test-Ba.semicore/
$ grep "&d4" OUT
ATM3.3 12-APR-13 Ba True ground state (6s2)
ATM3.3 12-APR-13 Ba 6s1 6pl 5d0
ATM3.3 12-APR-13 Ba 6s1 6p0 5d1
&d total energy differences in series
&d 1 2 3
&d 1 0.0000
&d 2 0.1551  0.0000
&d 3 0.0978 -0.0573 0.0000

End of series ----* spdfg &d&v
ATM3.3 12-APR-13 Ba True ground state (6s2)
ATM3.3 12-APR-13 Ba 6s1 6pl 5d0
ATM3.3 12-APR-13 Ba 6s1 6p0 bdl
&d total energy differences in series
&d 1 2 3
&d 1 0.0000

0.1569  0.0000
0.1011 -0.0558 0.0000
End of series ----* spdfg &d&v




Generate and test a pseudopotential for Ba with the
semicore explicitly included in the valence

Not only the differences in energies are well reproduced,
but also the shape of the orbitals:

$ gnuplot —persist pt.gplot (To generate a figure on the screen using gnuplot)

$ gnuplot pt.gps (To generate a postscript file with the figure)

AE wfn s AE wfn p
PT wins ,;;ﬁ,,:& '

"0 05 1 15 2 25 3 35 4

Note that the 65 and 6p states have a node,
as they must be orthogonal to the 55 and 5p states, respectively.




Conclusions

Core electrons...

highly localized and very depth energy

... are chemically inert

Pseudopotential idea

Ignore the dynamics of the core electrons (freeze them)

And replace their effects by an effective potential
Pseudopotentials are not unique
there might be many “best choices”

*Two overall competing factors: transferability vs hardness

‘Norm conservation helps transferability

-Always test the pseudopotential in well-known situations




Supplementary material for

Kleinman-Bylander projectors




The screened potential depends on the angular
momentum of the valence electron: is /-dependent

Reason for the /-dependency: different orthogonality conditions

For instance, in the Si atom

The 3s valence state has to
be orthogonal with the 2s
and 1s core states

The 3p valence state does
not feel the orthogonality
constraint with the 2s and
1s core states, because
they have different angular
momentum quantum

numbers

At large distances (beyond R ) the potential
is —Z,,/r, independently of /, because the

ionic core is seen as a point charge of
magnitude equal to the valence charge Z.

Within the core region, these
potentials feel different potentials
from the ionic core.

on




General form of a /-dependent pseudopotential

PP = 50 3 V¥ Vil = 3 V02
[=0

=0 m=-—I1

Where [ is a projector operator onto the /-th angular momentum subspace

— Z ‘Yim> <Y2m|

m=—I

Meaning of the previous expression:

When the pseudopotential operatorAVPS acts on an electronic wave
function, the projector operator P, selects the different angular
momentum components of the wave function, which are then
multiplied by the corresponding pseudopotential.

The contributions of all the angular momentums are finally added up to

form the total pseudopotential contribution to the Hamiltonian matrix
elements that enter Schrodinger equation.




It is useful to separate the ionic pseudopotentials
into a local (lI-independent) part and non-local terms

VlPS( ) = Viocal(r) + 0Vi(r)

The local part of the pseudoViocar (")
Is in principle arbitrary, but it must
join the semilocal potentials|/ (1),
which by construccion, all become
equal to the (unscreened) all electro
potential beyond the pseupotential
core radius R,

Thus, the non-local part is
short range

oVi(r) =0, for r > R.

All the long-range effects of the Coulomb potential are included in the
local part of the pseudopotential




It is useful to separate the ionic pseudopotentials
into a local (/-independent) part and non-local terms

In Siesta, the local pseudopotential is optimized for smoothness,
because it is represented in the real space grid

It is defined as the potential generated by a positive charge
distribution of the form

: 2 a and b are chosen to provide simultaneously
sinh(abr) : . .
) optimal real-space localization and

nlocal(’r) X 6_( sin b .
remprocal-space convergence
1.82

b=1 —
a R

J. M. Soler et al., J. Phys.: Condens. Matter 14, 2745 (2002)

V (rydberg)

r (bohr)




The pseudopotential operator in the semilocal form: local in
radial variable, non-local in the angular variable

lmaa:

Var (1) = Vioeal(r) + > > Vi) Vi(r) (Yo

[=0 m=—I
Matrix elements of the pseudopotential in some basis |¢,) assume the form

lmaac l

Vatoas = (0alVar, 88) = (balVieeal (M) d5) + > D / r2dr{@alYim)OVi(r)(Yim|ds)

(=0 m=-—1

The most common basis functions:
- floating (plane waves) €7 =41 Y i ji(kr)Yim (k)Y (7)

lm
- atom-centered (product of radial function and spherical harmonics) ¢, (7) = ¢, (7)Y;,.(0, ¢)

In either case, the above integral factorizes into two angular-dependent parts
that can be integrated separately, and a radial integral of the form

the radial variable

Gaop = /7“2902(7“)5‘/}(7“)905(7“)617“ Local integral in

f f

Radial part of the basis function (for AO) or the spherical Bessel functions (for PW)




Replacing the semi-local operator by a fully
non-local form separable in the radial variables

In the semilocal form, the matrix elements of the pseudopotential takes the form

SVPS(a, B) = <%|5VPS (r) Pl ¢s)

Z / / G2 (7)Y (P) OV, (1) Vi3, (7 ) 03 (F ) dFd

m=—I

Where due to the semilocal character of the pseudopotential,
a factor 0(r — r )is understood

Replacing the semi-local operator with a fully non-local form separable
in the radial variables, allows a factorization of the problem

oVi(r) — oV P (r, 7“/) = Cl(r)gl*(r')
Fﬁlm with  Foim = /Cl>I< (T)Yzm(f))¢a(77)d77

Now, the non-local part can be cheaply and accurately computed as two-center intergrals




General expression for a separable non-local
potential of the Kleinman-Bylander form

5 sep Oé 6 Z almFﬁlm with Falm /Cl lm(f))gba(f’)

m=—I

[
(ﬂzsep _ Z |Clm><Clm|

m——1I <Clm | wan§>

where wlm( ) are the atomic, reference pseudo-wave function

The only relevant aspect is to reproduce the all-electron calculation
for the reference configuration




Kleinman-Bylander fully non-local separable form

L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

" rsep
Request: the action of the fully non-local separable pseudopotential 5‘/1 on the
reference pseudo-wave function is the same as that of the original semi-local form

For that, they proposed

i) = 10VA(r)um)

so that

SViPSPS) (PSS VPS|
(WES|SVES [yES)

5‘A/Esep ‘¢lm> —

) = VP8 |yrs)




Kleinman-Bylander fully non-local separable form

L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

The KIeinman—ByIander projector is then written as

VKB Z ‘f B‘

m=—I

Where the normalized projection functions are given by

G 16Vii)
Gm |Cim)— (WESOVIIOVIUES)




Kleinman-Bylander fully non-local separable form

L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

The strength of the non-locality is determined by
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