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The physics of low-energy matter

Made of electrons & nuclei
(interacting with photons)

matter at T up to several millon K

(except for nuclear fission and radioactive decay)

-  Atomic & molecular physics
-  Condensed matter physics (solids, liquids)
-  Plasma physics

Low energy in the sense of
not probing inner structure of nuclei

Ali Yazdani’s group, Princeton
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The physics of low-energy matter
Behind properties and processes in

- Chemistry
- Biomedicine (biochem, biophys, molecular bio)
- Geo (geophyiscs, geochemistry)
- Lots of astrophysics (planets, exoplanets)
- Engineering (materials, electronics …)
- Energy research
- Nanoscience and technlogy
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Even a white dwarf
Carbon at high T and P

T. Metcalfe, M. Montgomery & K. Kaana
Astrophys. J. Lett. (2004)

White dwarf (dead star) in
Centaur (50 light-years away)

R = 2000 Km  (< Earth)

M = 300,000 x MEarth

T = 2 million K

Density = 106 gr/cc



Even a white dwarf
Carbon at high T and P

Lucy

T. Metcalfe, M. Montgomery & K. Kaana
Astrophys. J. Lett. (2004)

White dwarf (dead star) in
Centaur (50 light-years away)

R = 2000 Km  (< Earth)

M = 300,000 x MEarth

T = 2 million K

Density = 106 gr/cc



Just electrons and nuclei

The underlying physical laws necessary
for the mathematical theory of . . . the
whole of chemistry are thus completely
known, and the difficulty is only that the
exact application of these laws leads to
equations much too complicated to be
soluble.

Paul Dirac, 1929



Just electrons and nuclei?
Dirac’s statement just after quantum revolution

Quantum mechanics
of Heisenberg (1925) and Schrödinger (1926)

Schrödinger equation:
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after Planck (1901), Einstein (1905), Bohr (1913), Sommerfeld (1915), De Broglie (1923) etc

This is the fundamental equation to be solved for
most systems of electrons and nuclei.

A function defined in a space of
3N dimensions

(N = number of particles) (most = non-relativistic)



Just electrons and nuclei?
Exponential Complexity
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Solving in a computer:
e.g. discretising space

A 3D grid in 100 points per side  => 1003 points
Similar grid in 3N space => 1003N points

Computational costs (CPU & memory)
scales  ~exp(N)



Just electrons and nuclei?
Exponential Complexity
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Walter Kohn, in Nobel Lecture 1998,
called Ψ a non-legitimate scientific concept for large N

Solving in a computer:
e.g. discretising space

A 3D grid in 100 points per side  => 1003 points
Similar grid in 3N space => 1003N points

Computational costs (CPU & memory)
scales  ~exp(N)



First-principles calculations to simulate
the behaviour of matter

• Fundamental laws of physics

• Set of “accepted” approximations
to solve the corresponding equations on a computer

• No empirical input

                            PREDICTIVE POWER
(as opposed to empirical atomistic simulations)



Problem faced: dynamics of electrons & nuclei



Adiabatic decoupling

(1) (2)

⇒Nuclei are much
   slower than electrons

F = m a, evolution in
(discretised) time:

Molecular dynamics

! 

mn

me

>>1

Quantum mechanics
Many electron problem:

Density Functional Theory



Quantum mechanics for many particles

Schroedinger’s equation

is exactly solvable for
      - Two particles (analytically)
      - Very few particles (numerically)
The number of electrons and nuclei
             in a pebble is  ~10 23

                        =>  APPROXIMATIONS
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Many-electron problem
Old and extremely hard problem!

Different approaches
• Quantum Chemistry (Hartree-Fock, CI…)
• Quantum Monte Carlo
• Perturbation theory (propagators)
• Density Functional Theory (DFT)
           Very efficient and general
           BUT implementations are approximate
                  and hard to improve
                  (no systematic improvement)
                                    (… actually running out of ideas …)



Many-electron problem

M. Head-Gordon and E. Artacho
(Physics Today, April 08)

Lots of physics behind
first-principles methods

(90 years of quentum many-
particle physics)

DFT
best compromise

efficiency/accuracy

From laptops to huge
supercomputers (105 cores)



Many-electron problem
Density-Functional Theory

2. As if non-interacting electrons in an effective
(self-consistent) potential

1.   

! 

minE["({r r i})]#minE[$(r r )]



Hohenberg - Kohn

PROBLEM:
Functional unknown!
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"({r r i})#n(r r )
For our many-electron problem
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(universal functional)(depends on nuclear positions)
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Kohn - Sham
Independent particles in an effective potentialIndependent particles in an effective potential

Kinetic energy for systemKinetic energy for system
with no with no e-e e-e interactionsinteractions

Hartree potentialHartree potential

The rest:The rest:
exchangeexchange
correlationcorrelation

They rewrote the functional as:They rewrote the functional as:
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Equivalent to independentEquivalent to independent
particles under the potentialparticles under the potential
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Local Density Approximation (LDA)

(function parameterised for the homogeneous
electron liquid as obtained from QMC)

Generalised Gradient Approximation (GGA)

(new terms parameterised for heterogeneous
electron systems (atoms) as obtained from QC)
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Vxc "
#Exc[n]
#n (r)
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Vxc[n](r) " Vxc (n(r))
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Vxc[n](r) " Vxc (n(r),#n(r))

Exc  &  Vxc



Exc  &  Vxc

Local Density Approximation (LDA)Local Density Approximation (LDA)

In terms of theIn terms of the
energy densityenergy density

Exact result for the homogeneous electron liquid (from solving HF equations)Exact result for the homogeneous electron liquid (from solving HF equations)
Dirac Dirac expressed it like this (Slater)expressed it like this (Slater)

! 

Vxc "
#Exc[n]
#n (r)

! 

Exc
LDA[n] = d3r" n(r) # xc (n)

! 

Ex
LDA[n] = "

3
4
3
#

$ 

% 
& 

' 

( 
) 
1/ 2

d3r* n(r)4 / 3



  

! 

ˆ h = " 1
2
#2 +V (r r )

Independent particles
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Density Functionals

LDA (PZ)
GGAs: - Chemistry: BLYP, …

- Physics: PBE, RPBE, WC
MetaGGAs (kinetic energy density)
….

Hybrids:  exchange: 75% GGA + 25% HF
(not strictly DFT, non-local potential: costly)

          B3LYP, PBE0, etc



Practical aspects



Self-consistency
PROBLEM: The potential (input)
depends on the density (output)
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k-point sampling
Electronic quantum states in a periodic solid labelled by:

•  Band index
•  k-vector: vector in reciprocal space within the first Brillouin zone
     (Wigner-Seitz cell in reciprocal space)
•  Other symmetries (spin, point-group representation…)

Approximated by sums
over selected k-points! 
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K-point sampling

First Brillouin Zone

Regular k-grid

Inequivalent
points

Monkhorst-Pack

Δk  ⇒  lc=π/Δk

6x6 6x6 shifted



Pseudopotentials

valence-core interactions
net effect of core electrons

Pseudo wave-function                                pseudopotential



Solving:  Basis set

 unknown

Expand in terms of a finite 
set of basis functions
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S"µ # d3r$ %"
*(r) %µ (r)

! 

h"µ # d3r$ %"
*(r) ˆ h %µ (r)

where



Basis set: Atomic orbitals

s

p

d

f        SIESTA:  Strictly localized
       (zero beyond cut-off radius)




