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Eniac computer 
(1947) 

Pentium processor 
(2000) 

Current technologies:  
65 to 22 nm  

Miniaturization of (standard) Electronic Devices (top-down) 

Challenges: 
•  Leakage (tunneling) currents at gate oxide 
•  Quantum confinement effects (semi-classical theory starts to fail) 
•  Lithographic top-down printing of smaller features 
•  Atomic limit: doping becomes unreliable 
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New approach to electronics:  Bottom-up design 

R. Stadler, M. Forshaw and C. Joachim,  
Nanotechnology 14, 138 (2003) 

Huge experimental progress in fabrication and 
characterization 

•   Atomic wires: quantized conductance 
•   Diodes (with single molecules) 
•   Negative differential resistance 
•   Molecular Transistors (e.g., with nanotubes) 
•   Single-electron Transistor - Coulomb blockade 
•   Inelastic effects  (phonons ‒ IETS) 
•   Kondo resonances .... 
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Strong need for theoretical methods for molecular electronics 
and nanoeletronics:      
Quantum Behavior (semiclassical models are not applicable) 
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Distribution function at equilibrium: 
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Free electron gas Zero net current 
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-eE 
Out of Equilibrium (electric field) 

Classical Picture: collisions + drift 

Semiclassical Theory: Boltzmann 

Quantum effects:  
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Relevant Length Scales 

1. Nature of the collisions: 

-  Elastic (static impurities) 

  These change the momentum k, but not the quantum coherence of the wf’s 
  Characterized by a Relaxation Time (τ) and Mean Free Path  (lm=vτ) 

-  Inelastic (phonons; e-e interactions; spin excit; impurities with internal deg. of free.) 

  They change momentum, and introduce random phases (decoherence) 
  Temperature-dependent (phonons) 
  Characterized by a Phase Relaxation Length  (lϕ) 

2. Quantum Nature of Electrons:  de Broglie wavelength:   (λ = 2π/k) 

   Defines the lengths at which quantum effects become important 
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Transport Regimes: 

1.  Classical Diffusive Transport:  
•  macroscopic samples, with L ≫ lm, lϕ 
•   semiclassical Boltzmann eq. is valid 

2.  Coherent Transport:  
•  macroscopic or microscopic samples, with L < lϕ 
•   quantum interference effects  
 (weak and strong localization due to impurity disorder) 

3.  Ballistic Transport:  
 samples with L < lm, lϕ 
•   Momentum distribution deviates from Boltzmann;  
•   Breaking of Ohm’s law. 
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Wide conductor vs. narrow conductor: 
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Transport Regimes: 

1.  Classical Diffusive Transport:  
•  macroscopic samples, with L ≫ lm, lϕ 
•   semiclassical Boltzmann eq. is valid 

2.  Coherent Transport:  
•  macroscopic or microscopic samples, with L < lϕ 
•   quantum interference effects  
 (weak and strong localization due to impurity disorder) 

3.  Ballistic Transport:  
 samples with L < lm, lϕ 
•   Momentum distribution deviates from Boltzmann;  
•   Breaking of Ohm’s law. 

4.  Quantum Size Effects:  
•  samples with Lx,y,z  ̃ λ 
• quantization of levels in that dimension 
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“Quantum Transport” 
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QUANTUM OF CONDUCTANCE 
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Limitations: 

•  Coherent Transport 
•  Non-interacting electrons 

•  Electrons incident from left/right are in thermal equilibrium with left/right reservoirs. 
•  Complete thermalisation of electrons upon entering reservoir 
•  No back-scattering at lead-reservoir interface 
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M. A. Reed et al, Science 278, 252 (1997) 

4. Coherent Transport: Landauer	





No Molecules/Solution Molecules in Solution 

M. A. Reed et al, Science 278, 252 (1997) 

Wires formed (up to 1 atom thick!) 
Conductance quantization 
Atomic short-circuit 

Nonlinear I/V curves  
Molecular levels (channels) 
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Brandbyge et al., PRB 52, 8499  (1995) 
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Infinite but non-periodic systems:   

5. Some Math: Green’s Functions	





Retarded Green’s Function 
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At equilibrium: 
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•  Can be used in practice to compute the density matrix and the charge density 
without computing the eigenvectors/eigenvalues 

•  In DFT:  Charge Density obtained from Green’s Functions instead of 
eigenvectors  -- Self Consistency cycle 

•  Useful for solving systems with ‘extra’ interactions (for instance, among 
different subsystems)  -- Open systems! € 

Gr (E) → ρ(r) → VKS (r)

SCF 
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If the system can be divided into two sub-systems, we can 
take the couping V as the ’interaction’ in Dyson’s equation 
(note that V needs not to be small!): 

We have:    with  

Using Dyson’s eq. it is easy to prove that:  

Self energy ΣB  
-  Non-hermitian, energy dependent potential 

-  Accounts exactly for the effect of region B on A	
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1.  Split the system into: 

•  Central region (where we are interested) 

•  ‘Embedding’ or ‘Electrodes’ region 

2.  Solve the Green Function GB of the ‘embedding’ region 

3.  Calculate the self-energy due to the embedding 

4.  Solve the Green’s Function of the central region 

 Lopez-Sancho et al. J. Phys. F 14, 1205 (1984) 
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 Coupling the finite contact to infinite electrodes 

Greens Functions 
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Contact:   
•  Contains the molecule, and part of the Right and Left electrodes 
•  Sufficiently large to include the screening 

Solution in finite system: 

 Σ  (ε ) =  Selfenergies.  Can be obtained from the bulk Greens functions 
 Lopez-Sancho et al. J. Phys. F 14, 1205 (1984) 
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•  Bulk Greens functions and self-energies (unit cell calculation) 

•  Hamiltonian of the Contact region: 

•  Solution of GF’s equations   ⇒   ρ(r) 

•  Landauer conductance: transmission probability: 

PBC 

SCF 
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•  Keldysh-Kadanoff-Baym Non-equilibrium Green’s Functions 
Caroli, Combescot, Nozieres, Saint-James, J. Phys. C: Solid St. Phys., 1971 

H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors - Springer-
Verlag, Berlin, (1996).  

•  Same equations can be derived using scattering states 
Brandbyge, Mozos, Ordejón, Taylor, Stokbro, PRB 65, 165401 (2002) 
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Density matrix from the incoming scattering states from 
left to right (with their corresponding chem. pot.) 
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L C R 

Lippman-Schwinger Eq.: 
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Density matrix:  
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After some algebra.... 

Note that both the Density Matrix and the Spectral Density are more 
involved than in the equilibrium case (but reduce to them at equilibrium) 
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We, then, recover a Landauer-Büttiker formula for the conductance!, with 
explicit formulas for the transmission matrix and the density matrix (and the 
density in real space). 
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Poisson’s Eq: 

Given ρ(r), VH(r) is determined except 
up to a linear term: 

φ( r): particular solution of Poisson’s 
equation 

a and b: determined imposing BC: the 
shift V between electrodes 

•  φ (r) computed using FFT’s 

•  Linear term:  
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Onishi et al., Nature 395, 780 (1998) 

Brandbyge et al., PRB 52, 8499  (1995) 

Good statistics: 
1 atom=1 conductance quantum 

Hansen et al., APL 77, 708 (2000) 

Linear I/V curves 
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Calculation: 

Experiment: 

dzx,dyz 

Bandstructure of infinite chain 

Same result (T≈1) obtained, irrespective of chain length, electrode surface, 
strain, etc., which explains the narrow peak at 1 Go in the histograms 
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Voltage drop through  
the contact 

Density  Change in 
Density  

e 

Almost linear I/V curve 
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Stokbro, Taylor, Brandbyge, Mozos, Ordejón, Computational Materials Science 27 (2003) 151–160 
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Conductance: G = 2G0 (around EF) 

Charlier, Blase and Roche, RMP’07 

Defect-free, long (5,5) tube 
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Perfect tube 
 Tube with a S-W defect 

S-W defect in (5,5) CNT 
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NEQFs can be used to address inelastic effects (phonons, etc), and e-e interactions: 

•  General theory of contacts with e-e interactions (with non-interacting electrodes): 
Meir and Wingreen, PRL 2512, 68 (1992) 

•  GW Approximation (improvement on DFT excitation energies) - via self-energy 

•  e-ph interactions: 1st order Born approximation 

Code ‘Inelastica’ by Pausson and Fredriksen (http://sourceforge.net/projects/inelastica/) 

•  .... 

9. Beyond Elastic Scattering and Independent Electrons	




