Molecular dynamics in Siesta
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Born-Oppenheimer dynamics

Nuclei are much slower than electrons
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Extracting information from the Potential
Energy Surface (PES)

-Optimizations and Phonons:

-We move on the PES

- Local vs global minima

- PES 1s harmonic close to minima

-We move over the PES
- Good Sampling 1s required!!



Molecular Dynamics

*Follows the time evolution of a system
*Solve Newton’s equations of motion:

—

d?r(t)

F(t) = —VE = ma(t) = m

*Treats electrons quantum mechanically

*Treats nuclei classically
*Hydrogen may raise issues:

- tunneling (overestimating Energy
barriers)
*Allows study of dynamic processes
eAnnealing of complex materials
eExamines the influence of temperature

* Time averages Vs Statistical averages

dt?



Ergodicity

In MD we want to replace a full sampling on the appropriate statistical
ensemble by a SINGLE very long trajectory.

This is OK only if system is ergodic.

Ergodic Hypothesis a phase point for any isolated system passes in
succession through every point compatible with the energy of the system
before finally returning to its original position in phase space. This journey
takes a Poincare cycle.

In other words, Ergodic hypothesis: each state consistent with our knowledge
is equally “likely”.

— Implies the average value does not depend on initial conditions.

- <A>, .= <A> S0 <Agime” = (1/Nyp) = 2=y A; is good estimator.

time ensemble ’ time

Are systems in nature really ergodic? Not always!

— Non-ergodic examples are glasses, folding proteins (in practice) and
harmonic crystals (in principle).



Different aspects of ergodicity

e The system relaxes on a “reasonable” time scale towards a
unique equilibrium state (microcanonical state)

 Trajectories wander irregularly through the energy surface
eventually sampling all of accesible phase space.

 Trajectories initially close together separate rapidly.(sensitivity
to initial conditions). Lyapunov exponent.

Ergodic behavior makes possible the use of
statistical methods on MD of small system. Small
round-off errors and other mathematical
approximations may not matter.



Molecular Dynamics

 Timestep must be small enough to accurately sample highest frequency
motion

« Typical timestep is 1 fs (1 x 101° s)

* Typical simulation length = Depends on the system of study!!
(the more complex the PES the longer the simulation time)

» Is this timescale relevant to your process?

e Simulation has two parts:
- equilibration (redistribute energy)

System is equilibrated if averages of dynamical and structural
quantities do not change with time.

- production (record data)

e Results:
- diffusion coefficients

- Structural information (RDF’s,)
- free energies / phase transformations (very hard!)

» Is your result statistically significant?



Choosing the integrator

* The interatomic potentials are highly non-linear, often with discontinuous
high derivatives, or are evaluated with limited precision.

e Small errors (precision) or minimal differences in the initial conditions lead to
completely ditferent trajectories (Ergodicity!). Statistical averages are the
relevant quantities; they do not depend on the details of the trajectories (IF
the simulation is long enough!!!!).

e Because of this, and since potentials are not perfect gall potential models are
approximations to the real ones), one does not need too much accuracy in the
integration of the equations of motion (as long as errors are not too large, and
they do not affect fundamental properties such as conserved quantities).

e Conservation of energy IS important!!. We can allow errors in the total energy
conservation of the order of 0.01 kT.

e CPU time is completely dominated by the calculation of the forces. Therefore,
it is preferable to choose alﬂorithms that require few evaluations of the
forces, and do not need higher derivatives of the potential.



Standard method to solve ordinary differential equations:
the finite difference approach

Given molecular positions, velocities, and other dynamic
information at a time ¢

We attempt to obtain the position, velocities, etc. at a later time ¢ + ¢,
to a sufficient degree of accuracy

Notes:

The equations are solved on a step by step basis

The choice of the time interval Ot will depend on the method
of solution, but )¢ will be significantly smaller than the
typical time taken for a molecule to travel its own length



General step of a stepwise Molecular Dynamics simulation

Predict the positions, velocities, accelerations, etc. at a time ¢ + §¢ ,
using the current values of these quantities

A 4

Evaluate the forces, and hence the accelerations q; — 1!7_"@/777,Z
from the new positions

A 4

Correct the predicted positions, velocities, accelerations, etc. using the
new accelerations

A 4

Calculate any variable of interest, such as the energy, virial, order
parameters, ready for the accumulation of time averages, before
returning to the first point for the next step

<




Desirable qualities for a successful simulation algorithm

It should be fast and require little memory

Since the most time consuming part is the evaluation of the force, the
raw speed of the integration algorithm is not so important

It should permit the use of long time step 0t

Far more important to employ a long time step. In this way, a given
period of simulation time can be covered in a modest number of steps

It should duplicate the classical trajectory as closely as possible

It should satisfy the known conservation laws for energy and
momentum, and be time reversible

It should be simple in form and easy to program

Involve the storage of only a few coordinates, velocitites,...



Energy conservation is degraded as time step Is increased

All simulations involve a trade-off between

A good algorithm permits a large time step to be used
while preserving acceptable energy conservation



Parameters that determine the size of (¢

« Shape of the potential energy curves

« Typical particle velocities

Shorter time steps are used at high-temperatures, for light
molecules, and for rapidly varying potential functions



The Verlet algorithm method of integrating the

equations of motion: description of the algorithm
Direct solution of the second-order equations

Method based on:

- the positions (1)
- the accelerations a(t)
- the positions from the previous step 7t — 6t)

A Taylor expansion of the positions around ¢

Rt + 6t) = F(E) + D)5t + %a(t)aﬂ o
7t — 8t) = 7lt) — T(t)0t + (1) — -

Adding the two equations
7(t 4 6t) + 7t — 0t) = 27(t) + a(t)ot* + O(5t?)
7(t + 0t) = 27(t) — 7(t — 6t) + a(t)ot* + O(t?)



The Verlet algorithm method of integrating
the equations of motion: some remarks

7(t 4 6t) = 27(t) — 7(t — 6t) + a(t)6t* + O(5t)
Remark 1

The velocities are not needed to compute the trajectories, but they are useful
for estimating the kinetic energy (and the total energy).

They can be computed a posteriori using

| ¥(t) can only be computed once 7t 4 0t) is known]

sy - T+ 5t)2;tf’(t ) oo

Remark 2

4
Whereas the errors to compute the positions are of the order of 0t

The velocities are subject to errors of the order of 5t2



The Verlet algorithm method of integrating
the equations of motion: some remarks

7(t 4 6t) = 27(t) — 7(t — 6t) + a(t)6t* + O(5t)

Remark 3

The Verlet algorithm is properly centered: /(t — §t) and (¢ + i)
play symmetrical roles.

The Verlet algorithm is time reversible

Remark 4

The advancement of positions takes place all in one go,
rather than in two stages as in the predictor-corrector algorithm.



The Verlet algorithm method of integrating
the equations of motion: overall scheme

t+ot (-0t t  t4+5t

Known the positions at 7, we
compute the forces (and
therefore the accelerations at ¢)

Then, we apply the Verlet
algorithm equations to compute
the new positions

...and we repeat the process computing
the forces (and therefore the
accelerations at ;| 57)



When do we use MD?

e Amorphous systems:
e Molecular Liquids (H20,C02)
e Glasses (Si, SiO2)

« Displacive Phase transitions (P and T
relevant).

e Study of kinetic effects.
e Diffusion at surfaces
e Thermal stability



Nose-Hoover thermostat

MD in canonical distribution (TVN)
Introduce a friction force C(t)

Feedback makes
K.E.=3/2kT

Q= fictitious “heat bath mass”. Large Q 1s weak coupling



Hints

Nose Mass: Match a vibrational frequency of
the system, better high energy frequency

T
()

w2



Which Ensemble should we use?

NVE (Verlet): Microcanonical

Good trajectories.

Time reversible (up to numerical
error)

« Dynamical variables are well
defined.

Initial X and V are relevant:
necessity of equilibration.

e NPE (Parrinello-

Rahman)

e Phase transitions
systems under
pressure.

e 1 mass parameter
(barostat)

* NVT (Nose):

Canonical
Same sampling
In the « Good T control
thermodynamic limit « Equilibrates the system.
e Choice for Structural
sampling.

e Sensitive to Nose mass.

* NPT (Nose-

Parrinello-Rahman)

e Phase transitions under P
and T

« 2 mass parameters,
barostat and thermostat.
(Fluctuations!!



Molecular Dynamics in SIESTA(1)

e MD.TypeOfRun Verlet
NVE ensemble dynamics

e MD.TypeOfRun Nose
NVT dynamics with Nose thermostat

e MD.TypeOfRun ParrinelloRahman
NPE dynamics with P-R barostat

e MD.TypeOfRun NoseParrinelloRahman
NPT dynamics with thermostat/barostat

e MD.TypeOfRun Anneal
Anneals to specifiedpand T



Molecular Dynamics in SIESTA(2)

Setting the length of the run:
MD.InitialTimeStep 1
MD.FinalTimeStep 2000

e Setting the timestep:
MD.LengthTimeStep 1.0 fs

e Setting the temperature:
MD.InitialTemperature 298 K Maxwell-Boltzmann
MD.TargetTemperature 298 K ©B0

e Setting the pressure:
MD.TargetPressure 3.0 Gpa

e Thermostat / barostat parameters:
MD.NoseMass / MD.ParrinelloRahmanMass
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Annealing in SIESTA

e MD can be used to optimize structures:
MD.Quench true
- zeros velocity when opposite to force

e MD annealing:
MD.AnnealOption Pressure
MD.AnnealOption Temperature
MD.AnnealOption TemperatureAndPressure

e Timescale for achieving target
MD.TauRelax 100.0 f



Phonons and MD

. MD simulations (NVE)

2. Fourier transform of
Velocity-Velocity autocorrelation function.

1. Anharmonic effects: w(T)
2. Expensive, but information available for MD

simulations.

—




How to run a Molecular Dynamic in Siesta:

the

Verlet algorithm (NVE-microcanonical ensemble)

MD.TypeOfRun

MD.InitialTemperature

MD.Initial.Time.Step
MD.Final.Time.Step
MD.Length.Time.Step

WriteCoorStep

WriteForces

WriteMDHistory

WriteMDXmol

Verlet
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Standard Verlet algorithm
for Molecular Dynamics
Initial temperature for the
Molecular Dynamics run.
The atoms are assigned random
velocities drawn from the
Maxwell-Bolzmann distribution with the
corresponding temperature.
The constraint of zero center of
mass velocity is imposed.
Initial time step of the MD simulation.
Final time step of the MD simulation.
Length of the time step of the
Molecular Dynamic simulation.

If .true. it writes the
atomic coordinates at
every time step of the MD simulation
If .true. it writes the
atomic forces at
every time step of the MD simulation
If .true. Siesta accumulates the MD
trajectory in the
SystemLabel .MD
SystemLabel .MDE files
If .true. Siesta it originates the
writing of an extra file
SystemLabel . ANI
containing all the atomic coordinates
of the simulation in a format directly
readable by XMOL for animation.




Computing the instantaneous temperature,
kinetic energy and total energy

ZN 52|
- — 2K — SNICBT
i—1



Output of a Molecular Dynamic in Siesta:
the Verlet algorithm (NVE-microcanonical ensemble)

Conserved quantity

v

SystemLabel.MDE

# Step T (K) E_KS (eV) E_tot (eV) P (kBar)
600.00 -2955.25340 -2954.55542 . 166.448
536.29 -2955.18330 -2954.55944 . 171.567
639.06 -2955.30406 -2954 .56065 . 161.570
893.32 -2955.60359 -2954.56439 . 136.114

1261.77 -2956.02573 ~-2954 56955 . 104.263

1647.75 -2956.49212 -2954 .57530 . .292

2010.57 -2956.91768 -2954 .57879 . .133

2284.08 -2967.23821 -2954 .58114 . .519

2431.77 -2957.40992 -2954.58106 . .192

2438.54  -2957.41700 -2954.58026 . 422

2316.90 -2957.27302 -2954.57779 . .168

2095.96  -2957.01291 -2954.57469 . .360

1810.62 -2956.67849 -2954.57220 . .635
1493.81 -2956.30810 -2954.57036 . .229
1173.12  -2955.93339 -2954.56870 ‘ .845
873.37 -2955.58295 ~-2954 .56697 . .241
615.48 -2955.28182 ~-2954 .56584 . .756
414.73 -2955.04759 -2954.56514 . .956
281.21 -2954.89192 -2954.56480 . .6561
220.45 -2964.82120 -2954 . 56476 . .258
233.83 -2954.83693  -2954.56492 . .579
319.50 -2954.93689 -2954.56522 . .647

0~ OB WN -

Example for MgCoO; in the rhombohedral structure



Output of a Molecular Dynamic in Siesta:

SystemLabel.MD Atomic coordinates and velocities
(and lattice vectors and their time derivatives if the
dynamics implies variable cell).
(unformatted; post-process with iomd.F)

SystemLabel.MDE shorter description of the run, with energy,
temperature, etc. per time step
SystemLabel.ANI (contains the coordinates of every Molecular

Dynamics step in xyz format)

These files are accumulative even for different runs.
Remember to delete previous ones if you are not interested on them



Check conservation of energy

Length of time step: 3 fs
$ gnuplot
$ gnuplot> plot "md_verlet. MDE" using 1:3 with lines, "md_verlet. MDE" using 1:4
with lines

"md_verlet.3fs. MDE"u 1.3 ———
"md_verlet.3fs.MDE" u 1:4

Compare:

with

$ gnuplot> set terminal postscript color
$ gnuplot> set output “energy.ps”
$ gnuplot> replot



Check conservation of energy

Length of time step: 1 fs
$ gnuplot
$ gnuplot> plot "md_verlet. MDE" using 1:3 with lines, "md_verlet. MDE" using 1:4
with lines

"md_verlet.MDE" using 1:3
"md_verlet. MDE" using 1:4

Compare:

with

$ gnuplot> set terminal postscript color
$ gnuplot> set output “energy.ps”
$ gnuplot> replot



Check conservation of energy

Length of time step: 0.5 fs
$ gnuplot
$ gnuplot> plot "md_verlet. MDE" using 1:3 with lines, "md_verlet. MDE" using 1:4
with lines

"md_verlet.0.5fs. MDE" u 1:3
"md_verlet.0.5fs.MDE" u 1:4

Compare:

with

$ gnuplot> set terminal postscript color
$ gnuplot> set output “energy.ps”
$ gnuplot> replot



Check conservation of energy

Length of time step: 0.1 fs
$ gnuplot
$ gnuplot> plot "md_verlet. MDE" using 1:3 with lines, "md_verlet. MDE" using 1:4
with lines

"md_verlet.0.1fs.MDE" u 1:3
"md_verlet.0.1fs.MDE" u 1:4

Compare:

with

$ gnuplot> set terminal postscript color
$ gnuplot> set output “energy.ps”
$ gnuplot> replot



Check conservation of energy

-2954.54

[ [
'md_verlet.3fs MDE" u1:4 —
"md_verlet.1fs.MDE" u 1:4
-2954.56 H'.. -~ '"md_verlet.0.5fs:MDE" u 1:4 _
- "md_verlet.0.1fs. MDE" u 1:4 """
-2954.58
-2954.6
-2954.62
-2954.64
-2954.66
-2954.68

-2954.7

-2954.72

-2954.74
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‘\\\‘ Full solvation: Ab Initio Molecular Dynamics

P. B.Allen, M.V. Fernandez-Serra,
M. S. Hybertsen, and . T. Muckerman,
J. Phys. Chem. C 114, 13695 (2010).

X. Shen,Y.A. Small, ].Wang, \\\', w‘\\.\",,;,/\“\\)i;

J.Wang, L, Pedroza, A. Poissier, and
M. Fernandez-Serra, JPCB (2012).
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4x3x5 GaN unit cells
24 GaN surface sites
94 Water molecules
240 GaN atoms

MD Method: DFT (PBE)
Package: SIESTA

AIMD Equilibration: 2ps
AIMD production: |Ops

Dissociation occurred in first | PS;
initially undissociated.



Early history of GaN/liquid water interface equilibration: @
dissociation of water seen in AIMD run

2 A R T 4
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ch 10 20 of 24 Ga surface sites bind
O I OH- quickly, then fluctuate slightly.
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20 of 24 N surface sites bind
H* quickly, then hardly fluctuate.




Q GaN/Aqueous Interface: H-bond network &
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Figure 3: Average number of hydrogen bonds along the direction perpendicular to the GaN surface
for (a) the surface OH groups, and (b) all water molecules. Curves display the total number of
Hbond (solid), the donor of Hbond (dotted) and the acceptor of Hbond (dashed).



Proton diffusion

AF = —kaln{/dRoop(ROO,(S)}




Surface-Surface diffusion

Symmetric Distribution
at delta~0 there is non zero probability:

centrosymmetric complexes of the Zundel
(HsO2)" type. Barrier ~ 40 meV

% (a)




bulk-bulk diffusion

Qf

Diff .o @ 0 ©
Symmetric Distribution

@ 3 ¢ at delta~0 there is non zero probability:
/A ’ centro-symmetric complexes of the Zundel
& (HsO2)" type. Barrier ~ 20 meV

5 (A)

AF (mev)




QF

Surface-bulk diffusion

Diff_,
=)

Asymmetric Distribution, Asymmetric
Zundel complex

at delta~0 there is ~ 0 probability:
Barrier out ~ 75 meV.

Barrier in ~ 55 meV




H\\\‘ Deprotonation free energy barrier and pKa @T

/

Rcut
AGY) = —kgTin « C’o/ dRA(R)exp|—BAF(R)] ¢
0

pK, = —l()gmexp(—ﬁAG(O))

\

/

[ pKa — 2.9 4

01

Once H+ leave the surface, the barriers to diffuse within the bulk liquid region
are smaller than those to return to the surface.This agrees with the large

acidity obtained.
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PHONONS FROM MOLECULAR DYNAMICS @

3
R 12 —iw;t —1/2 T
Vo k(1) = (NMk) / 2 leJ okl iwjle 2w / a; + aj]
3
ZMk (Vo (£)Va,k (0 Z —tt (hwglng +1/2])
Fourier Transform J

ZMk <|'Ua,k(w)|2> - _%KbT25(w — wj)

o,k Jj=1




B — surface OH groups

== 64 water molecules
— — GaO

— = confined bulk water molecules |

2504 cm1-- combination of
stretching, anti-stretching and
2*bending modes

1209.4 cm'-- bending mode

505 cm'-- librations

New librational modes associated to Surface OH- stretching mode

surface OH"s



