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Potential Energy Surface (PES)
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Optimizations and Phonons:

- We move on the PES
- Local vs global minima
- PES is harmonic close to minima

MD

- We move over the PES
- Good Sampling is required!!



DERIVATIVES OF TOTAL ENERGIES

e Many properties depend more on the @ This can be computationally costly,
derivatives of the energies, than the and is susceptible to numerical noise
total energies themselves

e We could get the derivatives by
calculating the total energy at several ® Another ~approach is to use
points around each point, and do a perturbation theory — in the form of
numerical derivative the Hellman-Feynman theorem




The Hellman-Feynman theorem

» A way to calculate forces in quantum mechanics is provided
by the Hellman—Feynman theorem

» In a general form, consider Hamiltonian H()), depending on a
continuous parameter .

» If |[4)(A)) is an eigenvector of H(A) with eigenvalue E(A) then

HA)IY(A)) = EN) [ (A)) (1)
» Assume [¥(A)) is normalized:
WMb(A) =1 (2)

» Therefore
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The Hellman-Feynman theorem

» The Hellman—Feynman theorem then states that

o = (| v (@

I.e. the derivative of the total energy with respect to A equals
the expectation value of the derivative of the Hamiltonian

with respect to A. For the proof, we can write

E(A) = @A) [HN[$(A) (5)

» Differentiate both sides
o))+ (P IHIB) ) +

dE < )\)‘
(s ) ©
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dA



The Hellman-Feynman theorem

» Because [¢)(\)) is an eigenvector of H(\), we can write

= (|G s +

|¢(A)> +E(N) <¢()\)|$(;‘)> —

(v |G| ) +

e | ( 2w} + (vl B @

» Due to the normalization, the term in the brackets vanishes.
We therefore have the Hellman—Feynman theorem

£ <dw)



The Hellman-Feynman theorem

» Associate parameter A with the nuclear coordinates R.
» The forces acting on atoms can therefore be calculated as

F/ = Ve(R) = (0 |V,H(R)|v0) (8)

» The only term in the KS Hamiltonian which depends on the
atomic coordinates is the external potential. Therefore

5‘Vext(r)
OR|

(r)dr (9)

» One can therefore do classical dynamics of ions using forces
derived from ab initio electronic structure

» If the basis set depends on the ionic positions (e.g. atomic orb.
Gaussians), the terms in the brackets in (7) will not go exactly
to zero = Pulay forces



Forces on the atoms

Hellman-Feynmann theorem

Using an atomic-like basis:
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Pulay forces
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THE HELLMAN-FEYNMAN THEOREM AND
DENSITY FUNCTIONAL THEORY

HR - _%VE + ‘/e—e(r) + ‘/ion—e(ry R) + ch(r) + ‘/ion—ion(R)

e The DFT Hamiltonian is parameterisede For the  stresses, there are
in R contributions from the kinetic energy

and the Hartree terms
e We get a contribution from the ion-

electron (pseudo)potential

e We get a contribution from the ion- ¢ While the total energy is correct to
ion Couloumb interaction (from the second order in the errors, the forces
Ewald sum) are only good to first order



Structural optimisation:
Steepest descent
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Repeats search directions
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Structural optimisation:
minimum E vs atomic positions

Follow forces on atoms (gradient of function)

STEEPEST DESCENTS

e Advantages:

— simple to implement, and robust

— reliable — will find the minima

. : eventuall
e This is the simplest approach: ventualy

— take a downhill step along the local

steepest gradient, and a trial step ® Disadvantages:
length

— use line minimisation to find the — very slow to converge
optimal step length — can get stuck in a local minima



Theory for (local) geometry optimization

E(z + dz) = E(z) + G(x)dx + 5 H (x)dz?

I I

Gradients Hessian

or = —aH(z) 'G(x)
o = 1 for quadratic region

Energy minimisation within a basin



Conditioning
Given eigenvalues of Hessian H )ZZ — wJ{Z

Tmra’x™

Condition number: |, X —'{rm Determines convergence
W .
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Structural optimisation:
minimum E vs atomic positions

Follow forces on atoms (gradient of function)

CONJUGATE (GRADIENTS

— ————_ e Advantages:

Il

—— 1 — rapid convergence — in a quadratic
— — energy landscape, one dof per
iteration

. — low storage requirements
e This improves on steepest descents:

— the gradient is constructed to be® Disadvantages:

conjugate to all previous directions — more complex to implement than
— does not undo previous SD
minimisation — Hessian not explicitly calculated

— a line minimisation is performed — can get stuck in a local minima



Structural optimisation:
minimum E vs atomic positions

Follow forces on atoms (gradient of function)

BROYDEN-FLETCHER-GOLDFARD-SHANNO — BFGS

O’E 0°E e Advantages:
Ox10x, Odx10x N
A= : e 5 — convergence similar or better than
O°E O°E CG
dx Oz Oz Oz
. - — extra physical information s
0E = 5(X — Xmin)" - A - (X — Xmin) contained in the Hessian

e If we know the Hessian A we
can move from nearby the minimum

straight to it
— complex to code
— we don't know it, so we build up a — Hessian must be stored (# dof?)
guess using the BFGS algorithm — can get stuck in a local minima

e Disadvantages:



Optimization (and MD) general basic Step

Coordinates,Forces "\
%%@7 Forces




Optimization in SIESTA(1)

o Set runtype to conjugate gradients:
MD.TypeOfRun CG, Broyden

o Set maximum number of iterative steps:
MD.NumCGsteps 100

o Optionally set force tolerance:
MD.MaxForceTol 0.04 eV/Ang

e Optionally set maximum displacement:
MD.MaxCGDispl 0.2 Bohr



Structural optimisation:
minimum E vs atomic positions

Follow forces on atoms (gradient of function)

DAMPED MOLECULAR DYNAMICS

e Advantages:

X Over-damped
Under-damped
Critically damped

— simple to implement, robust and
more efficient than SD

— can use wavefunction extrapolation
(or Car-Parinello)

e This improves on steepest descents:

— use velocities as well as forces e Disadvantages:

— start with v = 0 and add damping
term to forces —yv

— adjust v and time step to obtain
optimal convergence

— convergence rate depends on
damping factor ~
— can get stuck in a local minima



Structural optimisation:
global minimum E vs atomic positions

Follow forces on atoms (gradient of function)

MD

— very robust and reliable
— reasonably immune to getting stuck
in local minima

SIMULATED ANNEALING

e Advantages:

e This is a stochastic method: : .
e Disadvantages:

— always accept steps that lower — incredibly slow convergence
the energy, and sometimes accept — the cooling rate must be carefully
upward steps, using a Boltzman adjusted to avoid quenching into
distribution local minima

— slowly reduce temperature, and — no guarantee that the true global

iterate to the goundstate minima will be found



Structural optimisation:
Variable cell

STRESS AND STRAIN

e The concept of forces is
straightforward, but you can also take h'= (I+€)h
derivatives with respect to the crystal

unit cell
e [ he stress tensor o is related to the

e The application of a strain changes strain tensor €:
the shape of the unit cell

__ 1 8E
. . Oap = ﬁaeaﬁ
e If we write the three unit cell vectors
a,b,c as columns of a matrix h the where 2 = a-b X c is the volume
shape change is described by: of the unit cell



Stress tensor and pressure
%E‘gaﬁ o aB={xy.z

Strain tensor
uia — E gaﬁ ui/B
1 oE
Oup = Q Jde. Stress tensor (Siesta)
=73 E O Hydrostatic pressure

1
P =P - 5 ER,F, Corrected pressure
Il



Structural optimisation:
Variable cell

STRESS AND STRAIN

NB Much messier if
non-orthogonal cell




Optimizations in SIESTA(2)

By default optimisations are for a fixed cell

To allow unit cell to vary:
MD.VariableCell true

Optionally set stress tolerance:
MD.MaxStressTol 0.1 Gpa

Optionally set cell preconditioning:
MD.PreconditionVariableCell 5.0 Ang

Set an applied pressure:
MD.TargetPressure 5.0 GPa



Z-Matrix coordinate format

* Internal coordinates: Molecules
represented by : "

— Bond lengths v

— Bending angles ¢, £
— Dihedral angles &,




Z-Matrix

» Allows for mixing of generalised and Cartesian
coordinates: Useful for constrained relaxations

Explore the PES by using

A relevant coordinate:
Useful for estimating
barriers




Advice on optimizations in SIESTA(I)

siesta: Atomic forces (eV/Ang):

1 -8.383827 -1.280971 a.567721
2 2.853984 A.8a5572 Aa.953782
3 -1.431885 2.487200 A.957536
4 -1.366388 -2.348017 A.5895964
Tot -B.2368629 -1.136217 3.374919
Max Z.8539a84
Res 1.538755 sqrt{ Sum f_ir2 / 3N
Max 2 .853984 constrained
X

siesta: Atomic forces {eV/Ang):

a

086491
689572
389017
389017

-0.6086001
8 .000000
A.538566

-0.5385386

-0.695694
8.253877
A.252556
A.252556

695694
3892686

695690

constrained

4



Eggbox ....



Advice on Optimizations in SIESTA(I)

Ill-conditioned systems (soft modes) can slow down
optimizations, very sensitive to mesh cutoff.

Use constraints when relevant.

Fixed to Si Bulk




Advice on Optimizations in SIESTA(III)

» Decouple Degrees of freedom (relax
separately different parts of the system).
Look at the evolution of relevant physics quantities

(band structure, Ef).

Fix the Zeolite,
Its relaxation is no
Longer relevant.
Fiupe<0.04 eV/A

No constraints F_ >01eV/A
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¥block Zmatrix

molecule

#ANCL) 1 J k rij alji tlkji ifr ifa iftl
1 (] 0 (] 0.00 1.396 zml (%] %] 1
1 1 ) @ CC 90.0 -60.0 @ @ %)
1 2 1 @ CC CCC 90.0 (%] (%] )
1 3 2 1 CcC CCC 0.0 (%] @ (%]
1 4 3 2 CC CCC 0.0 0 0 )
1 5 4 3 CC CCC 0.0 @ ] )
2 1 2 3 CH CCH 180.0 (%] %] )
2 2 1 / CH CCH 0.0 (%] (%] )
2 3 2 8 CH CCH 0.0 (%) (] )
2 4 3 9 CH CCH 0.0 @ %] 0
2 5 4 10 CH CCH 0.0 @ %] (%]
2 6 ) 11 CH CCH 0.0 (%] (%] )



