Forces and Structure Relaxation

Marivi Fernandez-Serra Stony Brook University Physics and Astronomy Department

Potential Energy Surface (PES)

Optimizations and Phonons:

- We move on the PES
- Local vs global minima
- PES is harmonic close to minima

- We move over the PES
- Good Sampling is required!!

Derivatives of Total Energies

- Many properties depend more on the This can be computationally costly, derivatives of the energies, than the and is susceptible to numerical noise total energies themselves
- We could get the derivatives by calculating the total energy at several • Another points around each point, and do a perturbanumerical derivative the Hellr
 - Another approach is to use perturbation theory in the form of the Hellman-Feynman theorem

- A way to calculate forces in quantum mechanics is provided by the Hellman–Feynman theorem
- ▶ In a general form, consider Hamiltonian $H(\lambda)$, depending on a continuous parameter λ .
- ▶ If $|\psi(\lambda)\rangle$ is an eigenvector of $H(\lambda)$ with eigenvalue $E(\lambda)$ then

$$H(\lambda)|\psi(\lambda)\rangle = E(\lambda)|\psi(\lambda)\rangle$$
 (1)

• Assume $|\psi(\lambda)\rangle$ is normalized:

$$\langle \psi(\lambda) | \psi(\lambda) \rangle = 1$$
 (2)

Therefore

$$\frac{d}{d\lambda}\langle\psi(\lambda)|\psi(\lambda)\rangle = 0 \tag{3}$$

The Hellman–Feynman theorem then states that

$$\frac{dE}{d\lambda} = \left\langle \psi(\lambda) \left| \frac{dH}{d\lambda} \right| \psi(\lambda) \right\rangle \tag{4}$$

i.e. the derivative of the total energy with respect to λ equals the expectation value of the derivative of the Hamiltonian with respect to λ . For the proof, we can write

$$E(\lambda) = \langle \psi(\lambda) | H(\lambda) | \psi(\lambda) \rangle \tag{5}$$

Differentiate both sides

$$\frac{dE}{d\lambda} = \left\langle \psi(\lambda) \left| \frac{dH}{d\lambda} \right| \psi(\lambda) \right\rangle + \left\langle \frac{d\psi(\lambda)}{d\lambda} \left| H \right| \psi(\lambda) \right\rangle + \left\langle \psi(\lambda) \left| H \right| \frac{d\psi(\lambda)}{d\lambda} \right\rangle$$

$$\left\langle \psi(\lambda) \left| H \right| \frac{d\psi(\lambda)}{d\lambda} \right\rangle$$
(6)

▶ Because $|\psi(\lambda)\rangle$ is an eigenvector of $H(\lambda)$, we can write

$$\frac{dE}{d\lambda} = \left\langle \psi(\lambda) \left| \frac{dH}{d\lambda} \right| \psi(\lambda) \right\rangle + E(\lambda) \left\langle \psi(\lambda) \left| \frac{d\psi(\lambda)}{d\lambda} \right\rangle = \left\langle \psi(\lambda) \left| \frac{dH}{d\lambda} \right| \psi(\lambda) \right\rangle + E(\lambda) \left[\left\langle \frac{d\psi(\lambda)}{d\lambda} \right| \psi(\lambda) \right\rangle + \left\langle \psi(\lambda) \left| \frac{dH}{d\lambda} \right| \psi(\lambda) \right\rangle \right\} \tag{7}$$

Due to the normalization, the term in the brackets vanishes.
We therefore have the Hellman–Feynman theorem

- ightharpoonup Associate parameter λ with the nuclear coordinates \mathbf{R} .
- The forces acting on atoms can therefore be calculated as

$$\mathbf{F}_{I} = \nabla_{I} \varepsilon(\mathbf{R}) = \langle \psi_{0} | \nabla_{I} H(\mathbf{R}) | \psi_{0} \rangle \tag{8}$$

► The only term in the KS Hamiltonian which depends on the atomic coordinates is the external potential. Therefore

$$\mathbf{F}_{I} = -\int \frac{\partial V_{\text{ext}}(\mathbf{r})}{\partial \mathbf{R}_{I}} n(\mathbf{r}) d\mathbf{r}$$
 (9)

- One can therefore do classical dynamics of ions using forces derived from ab initio electronic structure
- If the basis set depends on the ionic positions (e.g. atomic orb. Gaussians), the terms in the brackets in (7) will not go exactly to zero ⇒ Pulay forces

Forces on the atoms

Hellman-Feynmann theorem:

$$F_{l} = -\frac{\partial \langle \psi | H | \psi \rangle}{\partial R_{l}} = -\frac{\partial \psi}{\partial R_{l}} | H | \psi \rangle - \frac{\partial \psi}{\partial R_{l}} | \psi \rangle$$

Using an atomic-like basis:

$$\begin{split} \psi(\mathbf{r}) &= \sum_{\mu} c_{\mu} \phi_{\mu}(\mathbf{r}) \\ F_{I} &= -\frac{\partial \left\langle \psi \middle| H \middle| \psi \right\rangle}{\partial R_{I}} = -\frac{\partial}{\partial R_{I}} \sum_{\mu\nu} c_{\mu} c_{\nu} \left\langle \phi_{\mu} \middle| H \middle| \phi_{\nu} \right\rangle \\ &= -\sum_{\mu\nu} \left[\frac{\partial c_{\mu}}{\partial R_{I}} c_{\nu} + c_{\mu} \frac{\partial c_{\nu}}{\partial R_{I}} \right] \left\langle \phi_{\mu} \middle| H \middle| \phi_{\nu} \right\rangle - \sum_{\mu\nu} c_{\mu} c_{\nu} \left\langle \phi_{\mu} \middle| \frac{\partial H}{\partial R_{I}} \middle| \phi_{\nu} \right\rangle - \\ &- \sum_{\mu\nu} c_{\mu} c_{\nu} \left[\left\langle \frac{\partial \phi_{\mu}}{\partial R_{I}} \middle| H \middle| \phi_{\nu} \right\rangle + \left\langle \phi_{\mu} \middle| H \middle| \frac{\partial \phi_{\nu}}{\partial R_{I}} \right\rangle \right] \end{split} \quad \text{Pulay forces}$$

THE HELLMAN-FEYNMAN THEOREM AND Density Functional Theory

$$H_{\mathbf{R}} = -\frac{1}{2}\nabla_{\mathbf{r}}^2 + V_{\mathrm{e-e}}(\mathbf{r}) + V_{\mathrm{ion-e}}(\mathbf{r}, \mathbf{R}) + V_{\mathrm{xc}}(\mathbf{r}) + V_{\mathrm{ion-ion}}(\mathbf{R})$$

- The DFT Hamiltonian is parameterised
 For the stresses, are contributions from the kinetic energy in \mathbf{R} and the Hartree terms
- We get a contribution from the ionelectron (pseudo)potential
- We get a contribution from the ion- While the total energy is correct to ion Couloumb interaction (from the second order in the errors, the forces Ewald sum)
- are only good to first order

Structural optimisation: Steepest descent

minimum E vs atomic positions

Follow forces on atoms (gradient of function)

Steepest Descents

Advantages:

- simple to implement, and robust
- reliable will find the minima eventually

- This is the simplest approach:
 - take a downhill step along the local steepest gradient, and a trial step • Disadvantages: length
 - use line minimisation to find the very slow to converge optimal step length

 - can get stuck in a local minima

Theory for (local) geometry optimization

$$E(x+\delta x) = E(x) + G(x)\delta x + \frac{1}{2}H(x)\delta x^2$$

$$\uparrow \qquad \uparrow$$

$$Gradients \qquad \textit{Hessian}$$

$$\delta x = -\alpha H(x)^{-1} G(x)$$

$$\alpha = 1 \text{ for quadratic region}$$

Energy minimisation within a basin

Conditioning

Given eigenvalues of Hessian

$$H\vec{\chi}_i = \omega_i \vec{\chi}_i$$

Condition number:
$$\kappa \propto \frac{\omega_i^{max}}{\omega_i^{min}}$$

Determines convergence

It converges on the first iteration If all ω are equal

minimum E vs atomic positions

Follow forces on atoms (gradient of function)

Conjugate Gradients

- Advantages:
 - rapid convergence in a quadratic energy landscape, one dof per iteration
 - low storage requirements
- This improves on steepest descents:
 - the gradient is constructed to be conjugate to all previous directions
 - does not undo previous minimisation
 - a line minimisation is performed

- Disadvantages:
 - more complex to implement than SD
 - Hessian not explicitly calculated
 - can get stuck in a local minima

minimum E vs atomic positions

Follow forces on atoms (gradient of function)

Broyden-Fletcher-Goldfard-Shanno – BFGS

$$\mathbf{A} = \begin{pmatrix} \frac{\partial^2 E}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 E}{\partial x_1 \partial x_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 E}{\partial x_N \partial x_1} & \cdots & \frac{\partial^2 E}{\partial x_N \partial x_N} \end{pmatrix}$$

$$\delta E = \frac{1}{2} (\mathbf{x} - \mathbf{x}_{\min})^T \cdot \mathbf{A} \cdot (\mathbf{x} - \mathbf{x}_{\min})$$
• Advantages:
$$- \text{convergence similar or better than}$$

$$CG$$

$$- \text{extra physical information is contained in the Hessian}$$

$$\delta E = \frac{1}{2} (\mathbf{x} - \mathbf{x}_{\min})^T \cdot \mathbf{A} \cdot (\mathbf{x} - \mathbf{x}_{\min})^T$$

- If we know the Hessian A we can move from nearby the minimum straight to it
 - we don't know it, so we build up a guess using the BFGS algorithm

- Disadvantages:
 - complex to code
 - Hessian must be stored (# dof²)
 - can get stuck in a local minima

Optimization (and MD) general basic Step

Optimization in SIESTA(1)

- Set runtype to conjugate gradients:
 MD.TypeOfRun CG, Broyden
- Set maximum number of iterative steps:
 MD.NumCGsteps 100
- Optionally set force tolerance:
 MD.MaxForceTol 0.04 eV/Ang
- Optionally set maximum displacement:
 MD.MaxCGDispl 0.2 Bohr

minimum E vs atomic positions

Follow forces on atoms (gradient of function)

Damped Molecular Dynamics

Advantages:

- simple to implement, robust and more efficient than SD
- can use wavefunction extrapolation (or Car-Parinello)
- This improves on steepest descents:
 - use velocities as well as forces
 - start with $\mathbf{v}=\mathbf{0}$ and add damping term to forces $-\gamma\mathbf{v}$
 - adjust γ and time step to obtain optimal convergence

- Disadvantages:
 - convergence rate depends on damping factor γ
 - can get stuck in a local minima

global minimum E vs atomic positions

Follow forces on atoms (gradient of function)

SIMULATED ANNEALING

- Advantages:
 - very robust and reliable
 - reasonably immune to getting stuck in local minima

- This is a stochastic method:
 - always accept steps that lower the energy, and sometimes accept upward steps, using a Boltzman distribution
 - slowly reduce temperature, and iterate to the goundstate

- Disadvantages:
 - incredibly slow convergence
 - the cooling rate must be carefully adjusted to avoid quenching into local minima
 - no guarantee that the true global minima will be found

Variable cell

STRESS AND STRAIN

- The concept of forces is straightforward, but you can also take derivatives with respect to the crystal unit cell
- The application of a *strain* changes the shape of the unit cell
- If we write the three unit cell vectors
 a, b, c as columns of a matrix h the
 shape change is described by:

$$\mathbf{h}' = (\mathbf{I} + \boldsymbol{\epsilon})\mathbf{h}$$

• The *stress* tensor σ is related to the strain tensor ϵ :

$$\sigma_{lphaeta}=rac{1}{\Omega}rac{\partial E}{\partial\epsilon_{lphaeta}}$$

where $\Omega = \mathbf{a} \cdot \mathbf{b} \times \mathbf{c}$ is the volume of the unit cell

Stress tensor and pressure

$$r_{\alpha} \rightarrow \sum_{\beta} \varepsilon_{\alpha\beta} r_{\beta}$$
 $\alpha, \beta = \{x, y, z\}$

$$u_{i\alpha} \rightarrow \sum_{\beta} \varepsilon_{\alpha\beta} u_{i\beta}$$
 Strain tensor

$$\sigma_{\alpha\beta} \equiv \frac{1}{\Omega} \frac{\partial E}{\partial \varepsilon_{\alpha\beta}}$$
 Stress tensor (Siesta)

$$P = -\frac{1}{3} \sum_{\alpha} \sigma_{\alpha\alpha}$$
 Hydrostatic pressure

$$P_{mol} = P - \frac{1}{\Omega} \sum_{I} \mathbf{R}_{I} \mathbf{F}_{I}$$
 Corrected pressure

Variable cell

STRESS AND STRAIN

Optimizations in SIESTA(2)

By default optimisations are for a fixed cell

To allow unit cell to vary:

MD.VariableCell

true

Optionally set stress tolerance:

MD.MaxStressTol

0.1 Gpa

Optionally set cell preconditioning:

MD.PreconditionVariableCell

5.0 Ang

Set an applied pressure:

MD.TargetPressure

5.0 GPa

Z-Matrix coordinate format

 Internal coordinates: Molecules represented by:

- Bond lengths χ_i
- Bending angles *ϕ*_i
- − Dihedral angles ξi

Z-Matrix

 Allows for mixing of generalised and Cartesian coordinates: Useful for constrained relaxations

Explore the PES by using A relevant coordinate:
Useful for estimating barriers

Advice on optimizations in SIESTA(I)

siesto	a: Atomic fo	rces (eV/Ang)):	siesto	siesta: Atomic forces (eV/Ang):				
1	-0.303027	-1.280971	0.567721	1	0.006491	-0.000001	-0.695690		
2	2.853904	0.005572	0.953702	2	0.609572	0.000000	0.253077		
3	-1.431055	2.487200	0.957536	3	-0.309017	0.538586	0.252556		
4	-1.355350	-2.348017	0.895960	4	-0.309017	-0.538586	0.252556		
Tot	-0.235529	-1.136217	3.374919	Tot	-0.001972	-0.000001	0.062500		
Max	2.853904	5000000000		Max	0.695690				
Res	1.538755	sqrt(Sum	f_i^2 / 3N)	Res	0.389268	sqrt(Sum f_i^2 / 3N)			
Max	2.853904	constraine	ed	Max	0.695690	constrained			

Eggbox

Advice on Optimizations in SIESTA(II)

Ill-conditioned systems (soft modes) can slow down optimizations, very sensitive to mesh cutoff.

Use constraints when relevant.

Fixed to Si Bulk

Advice on Optimizations in SIESTA(III)

 Decouple Degrees of freedom (relax separately different parts of the system).
 Look at the evolution of relevant physics quantities (band structure, Ef).

%block	< Zm	atrix							
molecu	ıle								
#N(1)	i	j	k	rlj	alji	tlkji	ifr	ifa	ift
1	0	0	0	0.00	1.396	zm1	0	0	1
1	1	0	0	CC	90.0	-60.0	0	0	0
1	2	1	0	CC	CCC	90.0	0	0	0
1	3	2	1	CC	CCC	0.0	0	0	0
1	4	3	2	CC	CCC	0.0	0	0	0
1	5	4	3	CC	CCC	0.0	0	0	0
2	1	2	3	CH	CCH	180.0	0	0	0
2	2	1	7	CH	CCH	0.0	0	0	0
2	3	2	8	CH	CCH	0.0	0	0	0
2	4	3	9	CH	CCH	0.0	0	0	0
2	5	4	10	CH	CCH	0.0	0	0	0
2	6	5	11	CH	CCH	0.0	0	0	0