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Why atomic orbitals?

• “Atoms” are a very good first approximation.

• Most of the language of the chemical bond is 
based on atomic orbitals.

• The size of the basis is relatively small.



Most crystallographic analyses are done by
using superpositions of atomic charges





Chemical near-sightedness



Locality is key to Order-N scaling

``Divide and conquer’’ W. Yang, Phys. Rev. Lett. 66, 1438 (1992)
``Nearsightedness’’  W. Kohn, Phys. Rev. Lett. 76, 3168 (1996) 



Basis Size

Quick and dirty  
calculations

Highly converged 
calculations

Complete multiple-ζ
+

Polarization
+

Diffuse orbitals

Minimal basis set
 (single- ζ; SZ)

Depending on the required accuracy and 
available computational power

+ Basis Optimization





Convergence of the basis set
Bulk Si

Cohesion curves    PW and NAO convergence



Deformation charge 
density

in peptide bond in 
Crambine
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DZP Basis Set is adequate



The most important parameter 
is the range of the orbital

rcConfinement == Increase in 
kinetic energy

Eshift



Convergence with the range

J. Soler et al, J. Phys: Condens. Matter, 14, 2745 (2002) 

bulk Si

equal s, p orbitals 
radii

2752 J M Soler et al
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Figure 4. Dependence of the lattice constant, bulk modulus and cohesive energy of bulk silicon
on the cutoff radius of the basis orbitals. The s and p orbital radii have been made equal in this
case, to simplify the plot. PW refers to a well converged plane-wave calculation with the same
pseudopotential.

Table 1. Comparisons of the lattice constant a, bulk modulus B and cohesive energy Ec for bulk
Si, obtained with different basis sets. The basis notation is as in figure 2. PW refers to a 50 Ryd
cutoff plane-wave calculation. The LAPW results were taken from [34], and the experimental
values from [35].

Basis a (Å) B (GPa) Ec (eV)
SZ 5.521 88.7 4.722
DZ 5.465 96.0 4.841
TZ 5.453 98.4 4.908
SZP 5.424 97.8 5.227
DZP 5.389 96.6 5.329
TZP 5.387 97.5 5.335
TZDP 5.389 96.0 5.340
TZTP 5.387 96.0 5.342
TZTPF 5.385 95.4 5.359

PW 5.384 95.9 5.369
LAPW 5.41 96 5.28
Expt 5.43 98.8 4.63

where T̂ = − 1
2∇2 is the kinetic energy operator, I is an atom index, V H(r) and V xc(r) are

the total Hartree and XC potentials and V local
I (r) and V̂ KB

I are the local and nonlocal (KB)
parts of the pseudopotential of atom I .



Shape of  the optimal 3s orbital 
of Mg in MgO for different 

schemes

Corresponding optimal 
confinement potential

Soft confinement
(J. Junquera et al, Phys. Rev. B 64, 235111 (01) )

• Better variational basis sets

• Removes the discontinuity of 
the derivative



Optimization Procedure 

Set of parameters

Isolated atom 
Kohn-Sham Hamiltonian

+
Pseudopotential

Extra charge
Confinement potential

Full DFT calculation
of the system for which

the basis is to be 
optimized

(solid, molecule,...)

Basis set

{δQ, rc, Vconf ...}

OPTIMIZATION

Etot = {δQ, rc, Vconf ...}



Technical details



Effective potential for valence electrons
Pseudopotential

r (a.u.)

V(r)

?

Veff
r

-Ze2
r

The internal electrons do not participate 
in the chemical bond
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expansion of a smooth (pseudo-) charge density on a uniform spatial grid. The theory and usage
of first-principles norm-conserving pseudopotentials [17] is already well established. SIESTA
reads them in semilocal form (a different radial potential Vl(r) for each angular momentum l,
optionally generated scalar-relativistically [21,22]) from a data file that users can fill with their
preferred choice. We generally use the Troullier–Martins parametrization [23]. We transform
this semilocal form into the fully nonlocal form proposed by Kleinman and Bylander (KB) [19]:

V̂ PS = Vlocal(r) + V̂ KB (1)

V̂ KB =
lKB
max
∑

l=0

l
∑

m=−l

NKB
l

∑

n=1

|χKB
lmn 〉vKB

ln 〈χKB
lmn | (2)

vKB
ln = 〈ϕln|δVl(r)|ϕln〉 (3)

where r = |r|, r̂ = r/r and δVl(r) = Vl(r) − Vlocal(r). χKB
lmn (r) = χKB

ln (r)Ylm(r̂) (with
Ylm(r̂) a spherical harmonic) are the KB projection functions

χKB
ln (r) = δVl(r)ϕln(r). (4)

The functions ϕln are obtained from the eigenstates ψln of the semilocal pseudopotential
(screened by the pseudo-valence charge density) at energy εln using the orthogonalization
scheme proposed by Blöchl [24]:

ϕln(r) = ψln(r) −
n−1
∑

n′=1

ϕln′(r)
〈ϕln′ |δVl(r)|ψln〉
〈ϕln′ |δVl(r)|ϕln′ 〉

(5)

[

− 1
2r

d2

dr2
r +

l(l + 1)

2r2
+ Vl(r) + V H(r) + V xc(r)

]

ψln(r) = εlnψln(r). (6)

V H and V xc are the Hartree and XC potentials for the pseudo-valence charge density, and we
are using atomic units (e = h̄ = me = 1) throughout this paper.

The local part of the pseudopotential Vlocal(r) is in principle arbitrary, but it must join the
semilocal potentials Vl(r), which, by construction, all become equal to the (unscreened) all-
electron potential beyond the pseudopotential core radius rcore. Thus, δVl(r) = 0 for r > rcore.
Ramer and Rappe have proposed that Vlocal(r) be optimized for transferability [25], but most
plane wave schemes make it equal to one of the Vl(r) for reasons of efficiency. Our case is
different because Vlocal(r) is the only pseudopotential part that needs to be represented in the
real space grid, while the matrix elements of the nonlocal part V̂KB are cheaply and accurately
calculated by two-centre integrals. Therefore, we optimize Vlocal(r) for smoothness, making
it equal to the potential created by a positive charge distribution of the form [26]

ρ local(r) ∝ exp[−(sinh(abr)/ sinh(b))2], (7)

where a and b are chosen to provide simultaneously optimal real-space localization and
reciprocal-space convergence8. After some numerical tests we have taken b = 1 and
a = 1.82/rcore. Figure 1 shows Vlocal(r) for silicon.

Since Vl(r) = Vlocal(r) outside rcore, χKB
ln (r) is strictly zero beyond that radius,

irrespective of the value9 of εln. Generally it is sufficient to have a single projector χKB
lm

8 The local potentials constructed in this way usually have a strength (depth) that is an average of the different Vl and
neither too deep nor too shallow. This tends to maintain the separable potentials free of ghost states [80].
9 For some atoms, typically those with semicore states suitable for treating together with the valence states, Vl(r) only
assumes the asymptotic coulombic behaviour −2Zval/r , and therefore only cancels out exactly with our Vlocal (r), for
r larger than certain rC > rcore . In these cases, to avoid very extended KB projector functions, we generate the local
potentials with a prescription different from that presented in the text: if rC > 1.3 rcore we take Vlocal (r) = Vl(r)
for r > rcore and Vlocal (r) = exp(v1 + v2r

2 + v3r
3) for r < rcore , where v1, v2 and v3 are determined by enforcing

the continuity of the potential up to the second derivative. This simple prescription usually produces smooth local
potentials with properties similar to those noted in the text (see footnote 8).

Norm-conserving pseudopotentials
in Kleinman-Bylander form
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dependence, but different radial dependence, which is conventionally called a ‘multiple-ζ ’
basis. The radial functions are defined by a cubic spline interpolation [28] from the values
given on a fine radial mesh. Each radial function may have a different cutoff radius and, up
to that radius, its shape is completely free and can be introduced by the user in an input file.
In practice, it is also convenient to have an automatic procedure to generate sufficiently good
basis sets. We have developed several such automatic procedures, and we shall describe one
of them here for completeness, even though we stress that the generation of the basis set, like
that of the pseudopotential, is to a large extent up to the user and independent of the SIESTA
method itself.

In the case of a minimal (single-ζ (SZ)) basis set, we have found convenient and efficient
the method of Sankey and Niklewski [7,29]. Their basis orbitals are the eigenfunctions of the
(pseudo-) atom within a spherical box (although the radius of the box may be different for each
orbital; see below). In other words, they are the (angular-momentum-dependent) numerical
eigenfunctions φl(r) of the atomic pseudopotential Vl(r), for an energy εl + δεl chosen so that
the first node occurs at the desired cutoff radius rc

l :
(

− 1
2r

d2

dr2
r +

l(l + 1)

2r2
+ Vl(r)

)

φl(r) = (εl + δεl)φl(r) (9)

with φl(r
c
l ) = 0 (we omit indices I and n here for simplicity). In order to obtain a well

balanced basis, in which the effect of the confinement is similar for all the orbitals, it is usually
better to fix a common ‘energy shift’ δε, rather than a common radius rc, for all the atoms and
angular momenta. This means that the orbital radii depend on the atomic species and angular
momentum.

One obvious possibility for multiple-ζ bases is to use pseudopotential eigenfunctions
with an increasing number of nodes [29]. They have the virtue of being orthogonal and
asymptotically complete. However, the efficiency of this kind of basis depends on the radii of
confinement of the different orbitals, since the excited states of the pseudopotential are usually
unbound. Thus, in practice we have found this procedure rather inefficient. Another possibility
is to use the atomic eigenstates for different ionization states [30]. We have implemented a
different scheme [31], based on the ‘split-valence’ method, which is standard in quantum
chemistry [32]. In that method, the first-ζ basis orbitals are ‘contracted’ (i.e. fixed) linear
combinations of Gaussians, determined either variationally or by fitting numerical atomic
eigenfunctions. The second-ζ orbital is then one of the Gaussians (generally the slowest-
decaying one), which is ‘released’ or ‘split’ from the contracted combination. Higher-ζ orbitals
are generated in a similar way by releasing more Gaussians. Our scheme adapts this split-
valence method to our numerical orbitals. Following the same spirit, our second-ζ functions
φ

2ζ
l (r) have the same tail as the first-ζ orbitals φ

1ζ
l (r) but change to a simple polynomial

behaviour inside a ‘split radius’ rs
l :

φ
2ζ
l (r) =

{

rl(al − blr
2) if r < rs

l

φ
1ζ
l (r) if r ! rs

l

(10)

where al and bl are determined by imposing the continuity of value and slope at rs
l . These

orbitals therefore combine the decay of the atomic eigenfunctions with a smooth and featureless
behaviour inside rs

l . We have found it convenient to set the radius rs
l by fixing the norm of φ

1ζ
l

in r > rs
l . We have found empirically that a reasonable value for this ‘split norm’ is ∼0.15.

Actually, instead of φ
2ζ
l thus defined, we use φ

1ζ
l − φ

2ζ
l , which is zero beyond rs

l , to reduce
the number of nonzero matrix elements, without any loss of variational freedom.

To achieve well converged results, in addition to the atomic valence orbitals, it is generally
necessary to also include polarization orbitals, to account for the deformation induced by bond

The pseudopotential is used to construct the 
pseudoatomic orbitals
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the Bloch-state expansion coefficients cµi(k):

ψi (k, r) =
∑

µ′

eikRµ′ φµ′(r)cµ′i (k) (43)

where the sum in µ′ extends to all basis orbitals in space, i labels the different bands, cµ′i = cµi

if µ′ ≡ µ and ψi (k, r) is normalized in the unit cell.
The electron density is then

ρ(r) =
∑

i

∫

BZ

ni(k)|ψi (k, r)|2 dk =
∑

µ′ν ′

ρµ′ν ′φ∗
ν ′(r)φµ′(r) (44)

where the sum is again over all basis orbitals in space, and the density matrix

ρµν =
∑

i

∫

BZ

cµi(k)ni(k)ciν(k)eik(Rν−Rµ) dk (45)

is real (for real φµ) and periodic, i.e. ρµν = ρµ′ν ′ if (ν, µ) ≡ (ν ′, µ′) (with ‘≡’ meaning again
‘equivalent by translation’). Thus, to calculate the density at a grid point of the unit cell, we
simply find the sum (44) over all the pairs of orbitals φµ, φν in the supercell that are nonzero
at that point.

In practice, the integral in (45) is performed in a finite, uniform grid of the BZ. The fineness
of this grid is controlled by a k-grid cutoff lcut , a real-space radius which plays a role equivalent
to the plane-wave cutoff of the real-space grid [43]. The origin of the k-grid may be displaced
from k = 0 in order to decrease the number of inequivalent k-points [44].

If the unit cell is large enough to allow a %-point-only calculation, the multiplication by
phase factors is skipped and a single real-matrix eigenvalue problem is solved (in this case,
the real matrix elements are accumulated directly in the first stage, if multiple overlaps occur).
In this way, no complex arithmetic penalty occurs, and the differences between %-point and
k-sampling are limited to a very small section of the code, while all the two-centre and grid
integrals always use the same real-arithmetic code.

9. Total energy

The Kohn–Sham [14] total energy can be written as a sum of a band-structure (BS) energy
plus some correction terms, sometimes called ‘double-count’ corrections. The BS term is the
sum of the energies of the occupied states ψi :

EBS =
∑

i

ni〈ψi |Ĥ |ψi〉 =
∑

µν

Hµνρνµ = Tr(Hρ) (46)

where spin and k-sampling notations are omitted here for simplicity. At convergence, the ψi are
simply the eigenvectors of the Hamiltonian, but it is important to realize that the Kohn–Sham
functional is also perfectly well defined outside this so-called ‘Born–Oppenheimer surface’,
i.e. it is defined for any set of orthonormal ψi . The correction terms are simple functionals of
the electron density, which can be obtained from equation (35), and the atomic positions. The
Kohn–Sham total energy can then be written as

EKS =
∑

µν

Hµνρνµ − 1
2

∫

V H(r)ρ(r) d3r +
∫

(εxc(r) − V xc(r))ρ(r) d3r +
∑

I<J

ZIZJ

RIJ

(47)

where I, J are atomic indices, RIJ ≡ |RJ − RI |, ZI , ZJ are the valence ion pseudoatom
charges and εxc(r)ρ(r) is the exchange–correlation energy density. In order to avoid the long-
range interactions of the last term, we construct from the local pseudopotential V local

I , which
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Kinetic matrix elements T (R) ≡ 〈ψ∗
1 | − 1

2∇2|ψ2〉 can be obtained in exactly the same
way, except for an extra factor of k2 in equation (28):

Tl1m,l2m2,l(R) = 4π il1−l2−l

∫ ∞

0

1
2k4 dk jl(kR)i−l1ψ∗

1,l1m1
(k)il2ψ2,l2m2(k). (31)

Since we frequently use basis orbitals with a kink [7], we need rather fine radial grids to obtain
accurate kinetic matrix elements, and we typically use grid cutoffs of more than 2000 Ryd for
this purpose. Once obtained, the fine grid does not penalize the execution time, because the
interpolation effort is independent of the number of grid points. It also affects very marginally
the storage requirements, because of the one-dimensional character of the tables. However,
even though it needs to be performed only once, the calculation of the radial integrals (24), (28),
and (31) is not negligible if performed unwisely. We have developed a special fast radial Fourier
transform for this purpose, as explained in appendix B.

Dipole matrix elements, such as 〈ψ1|x|ψ2〉, can also be obtained easily by defining a new
function χ1(r) ≡ xψ1(r), expanding it using (21) and computing 〈χ1|ψ2〉 as explained above
(with the precaution of using lmax + 1 instead of lmax).

6. Grid integrals

The matrix elements of the last three terms of equation (16) involve potentials which are
calculated on a real-space grid. The fineness of this grid is controlled by a ‘grid cutoff’
Ecut : the maximum kinetic energy of the plane waves that can be represented in the grid
without aliasing12. The short-range screened pseudopotentials V NA

I (r) in (16) are tabulated
as a function of the distance to atoms I and easily interpolated at any desired grid point. The
last two terms require the calculation of the electron density on the grid. Let ψi (r) be the
Hamiltonian eigenstates, expanded in the atomic basis set

ψi (r) =
∑

µ

φµ(r)cµi, (32)

where cµi = 〈φ̃µ|ψi〉 and φ̃µ is the dual orbital of φµ: 〈φ̃µ|φν〉 = δµν . We use the compact
index notation µ ≡ {I lmn} for the basis orbitals, equation (8). The electron density is then

ρ(r) =
∑

i

ni |ψi (r)|2 (33)

where ni is the occupation of state ψi . If we substitute (32) into (33) and define a density
matrix

ρµν =
∑

i

cµiniciν, (34)

where ciν ≡ c∗
νi , the electron density can be rewritten as

ρ(r) =
∑

µν

ρµνφ
∗
ν (r)φµ(r). (35)

We use the notation φ∗
µ for generality, despite our use of real basis orbitals in practice. Then, to

calculate the density at a given grid point, we first find all the atomic basis orbitals, equation (8),
at that point, interpolating the radial part from numerical tables, and then we use (35) to calculate
the density. Notice that only a small number of basis orbitals are nonzero at a given grid point,
so that the calculation of the density can be performed in O(N) operations, once ρµν is known.

12 Notice that our grid cutoff to represent the density is not directly comparable to the energy cutoff in the context
of plane-wave codes, which usually refers to the wavefunctions. Strictly speaking, the density requires a value four
times larger.
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∫ ∞

0
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the storage requirements, because of the one-dimensional character of the tables. However,
even though it needs to be performed only once, the calculation of the radial integrals (24), (28),
and (31) is not negligible if performed unwisely. We have developed a special fast radial Fourier
transform for this purpose, as explained in appendix B.

Dipole matrix elements, such as 〈ψ1|x|ψ2〉, can also be obtained easily by defining a new
function χ1(r) ≡ xψ1(r), expanding it using (21) and computing 〈χ1|ψ2〉 as explained above
(with the precaution of using lmax + 1 instead of lmax).

6. Grid integrals

The matrix elements of the last three terms of equation (16) involve potentials which are
calculated on a real-space grid. The fineness of this grid is controlled by a ‘grid cutoff’
Ecut : the maximum kinetic energy of the plane waves that can be represented in the grid
without aliasing12. The short-range screened pseudopotentials V NA

I (r) in (16) are tabulated
as a function of the distance to atoms I and easily interpolated at any desired grid point. The
last two terms require the calculation of the electron density on the grid. Let ψi (r) be the
Hamiltonian eigenstates, expanded in the atomic basis set

ψi (r) =
∑

µ

φµ(r)cµi, (32)

where cµi = 〈φ̃µ|ψi〉 and φ̃µ is the dual orbital of φµ: 〈φ̃µ|φν〉 = δµν . We use the compact
index notation µ ≡ {I lmn} for the basis orbitals, equation (8). The electron density is then

ρ(r) =
∑

i

ni |ψi (r)|2 (33)

where ni is the occupation of state ψi . If we substitute (32) into (33) and define a density
matrix

ρµν =
∑

i

cµiniciν, (34)

where ciν ≡ c∗
νi , the electron density can be rewritten as

ρ(r) =
∑

µν

ρµνφ
∗
ν (r)φµ(r). (35)

We use the notation φ∗
µ for generality, despite our use of real basis orbitals in practice. Then, to

calculate the density at a given grid point, we first find all the atomic basis orbitals, equation (8),
at that point, interpolating the radial part from numerical tables, and then we use (35) to calculate
the density. Notice that only a small number of basis orbitals are nonzero at a given grid point,
so that the calculation of the density can be performed in O(N) operations, once ρµν is known.

12 Notice that our grid cutoff to represent the density is not directly comparable to the energy cutoff in the context
of plane-wave codes, which usually refers to the wavefunctions. Strictly speaking, the density requires a value four
times larger.
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Figure 5. (a) Convergence of the total energy and pressure in bulk silicon as a function of the
energy cutoff Ecut of the real-space integration mesh. Circles and continuous line: using a grid-cell
sampling of eight refinement points per original grid point. The refinement points are used only in
the final calculation, not during the selfconsistency iteration (see text). Triangles: two refinement
points per original grid point. White circles: no grid-cell sampling. (b) Bond length and angle of
the water molecule as a function of Ecut .

where α, β are spin indices, with up or down values. The coefficients cα
µi are obtained by

solving the generalized eigenvalue problem
∑

νβ

(H αβ
µν − EiSµνδ

αβ)c
β
νi = 0 (39)

where H αβ
µν , like ραβ

µν , is a (2N × 2N ) matrix, with N the number of basis functions:

H αβ
µν = 〈φµ|T̂ + V̂ KB + V NA(r) + δV H(r) + V

αβ
XC(r)|φν〉. (40)

This is in contrast to the collinear spin case, in which the Hamiltonian and density matrices can
be factorized into two N × N matrices, one for each spin direction. To calculate V

αβ
XC(r) we

first diagonalize the 2 × 2 matrix ραβ(r) at every point, in order to find the up and down spin
densities ρ↑(r), ρ↓(r) in the direction of the local spin vector. We then find V

↑
XC(r), V

↓
XC(r)

in that direction, with the usual local spin density functional [15], and we rotate V
αβ
XC(r) back

to the original direction. Thus, the grid operations are still basically the same, except that they
need now to be repeated three times, for the ↑↑, ↓↓ and ↑↓ components. Notice that ραβ(r)

and V
αβ
XC(r) are locally Hermitian, while H αβ

µν and ραβ
µν are globally Hermitian (H βα

νµ = H αβ∗
µν ),

so their ↓↑ components can be obtained from the ↑↓ ones.

8. Brillouin zone sampling

Integration of all magnitudes over the Brillouin zone (BZ) is essential for small and moderately
large unit cells, especially of metals. Although SIESTA is designed for large unit cells, in
practice it is very useful, especially for comparisons and checks, to be able to also perform
calculations efficiently on smaller systems without using expensive superlattices. On the other
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µν ),

so their ↓↑ components can be obtained from the ↑↓ ones.
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Integration of all magnitudes over the Brillouin zone (BZ) is essential for small and moderately
large unit cells, especially of metals. Although SIESTA is designed for large unit cells, in
practice it is very useful, especially for comparisons and checks, to be able to also perform
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Sµν = 〈φµ|φν〉
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H = T + Vion(r) + Vnl+ VH(r) + Vxc(r)

δVH(r) = VH[ρSCF(r)] - VH[ρatoms(r)]
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   Neutral-atom potential
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FEATURES



Electronic structure

• Bands (including (non-collinear) spin 
polarization)

• Mulliken population analysis, (partial) density 
of states.  Soon: COOP and COHP curves.

• Berry-phase polarization calculations
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• NVE ensemble dynamics
• NVT dynamics with Nose thermostat
• NVE dynamics with Parrinello-Rahman barostat
• NVT dynamics with thermostat/barostat
• Anneals to specified p and T
• Relaxation (with constraints) of atomic 

coordinates and cell parameters

Molecular Dynamics and relaxation



  

Parallel SIESTA

• Standard mode:
– Parallel diagonalization and grid operations.
– Needs good communication among nodes.
– Uses SCALAPACK

• Parallel over k-points mode:
– Very efficient (operations are trivially parallel)



  

FDF Input file
# This is a comment

NumberOfSpecies        1       
number-of-atoms        2      

LatticeConstant     5.43 Ang     # Note units 

%block LatticeVectors
  0.000  0.500  0.500
  0.500  0.000  0.500
  0.500  0.500  0.000
%endblock LatticeVectors

%block ChemicalSpeciesLabel
  1  14  Si            # Species number, Z, Symbol
%endblock ChemicalSpeciesLabel



  

FDF
• Data can be given in any order

• Some data can be omitted and will be assigned 
default values

• Syntax: ‘data label’ followed by its value
Character string:              SystemLabel          h2o

Integer:                            NumberOfAtoms   3

Real:                                PAO.SplitNorm     0.15

Logical:                           SpinPolarized         .false.

Physical magnitudes        LatticeConstant     5.43 Ang



  

FDF
•  Labels are case insensitive.  Characters -_. are ignored

LatticeConstant is equivalent to lattice-constant

•  Text following # are comments

•  Logical values: T ,  .true.  , true  ,  yes

                           F ,  .false. , false , no 

•  Character strings, NOT in apostrophes

•  Complex data structures: blocks

%block label

…

%endblock label 



  

FDF

•  Physical magnitudes: followed by their units.

Many physical units are recognized for each magnitude 
(Length: m, cm, nm, Ang, bohr)

Automatic conversion to the ones internally required.

•  You may ‘include’ other FDF files or redirect the search 
to another file:

lattice-vectors < cell.fdf



  

Lattice Vectors
LatticeConstant: real length to define the scale of the lattice vectors

LatticeConstant        5.43 Ang

LatticeParameters:  Crystallographic way

%block LatticeParameters

      1.0  1.0  1.0  60.  60.  60.

%endblock LatticeParameters

LatticeVectors: read as a matrix, each vector being a line
%block LatticeVectors

       0.0    0.5    0.5

       0.5    0.0    0.5

       0.5    0.5    0.0

%endblock LatticeVectors



  

Atomic Coordinates
AtomicCoordinatesFormat: format of the atomic positions in input:

Bohr: cartesian coordinates, in bohrs

Ang: cartesian coordinates, in Angstroms

ScaledCartesian: cartesian coordinates, units of the lattice 
constant

Fractional: referred to the lattice vectors
AtomicCoordinatesFormat       Fractional

AtomicCoordinatesAndAtomicSpecies:  
%block AtomicCoordinatesAndAtomicSpecies

0.00   0.00   0.00   1

0.25   0.25   0.25   1

%endblock AtomicCoordinatesAndAtomicSpecies



  

Functional 
DFT

XC.Functional LDA GGA

XC.authors PW92CA

PZ

PBE

DFT ≡ Density Functional Theory

LDA ≡ Local Density Approximation

GGA ≡ Generalized Gradient Approximation

CA ≡ Ceperley-Alder

PZ ≡ Perdew-Zunger

PW92 ≡ Perdew-Wang-92

PBE ≡ Perdew-Burke-Ernzerhof

SpinPolarized



  

Solution method

  
r 
R , r a { }

Hamiltonian, H, and Overlap, S,  matrices

Order N operations

( ) 0=− CSH ε

SolutionMethod diagon Order-N

From the atomic coordinates and the unit cell



  

k-sampling

kgrid_cutoff: 
kgrid_cutoff         10.0 Ang

kgrid_Monkhorst_Pack:  
%block kgrid_Monkhorst_Pack

       4     0    0   0.5

0     4    0   0.5 

0     0    4   0.5

%endblock kgrid_Monkhorst_Pack

Special set of k-points: Accurate results with a few k-points:

Baldereschi, Chadi-Cohen, Monkhorst-Pack



The SIESTA code

• Linear-scaling DFT
• Numerical atomic orbitals, with quality control.
• Forces and stresses for geometry optimization.
• Diverse Molecular Dynamics options.
• Capable of treating large systems with modest hardware.
• Parallelized.

http://www.uam.es/siesta
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