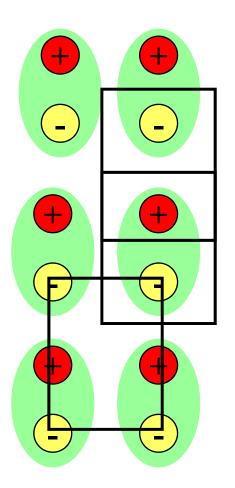
Electric polarization

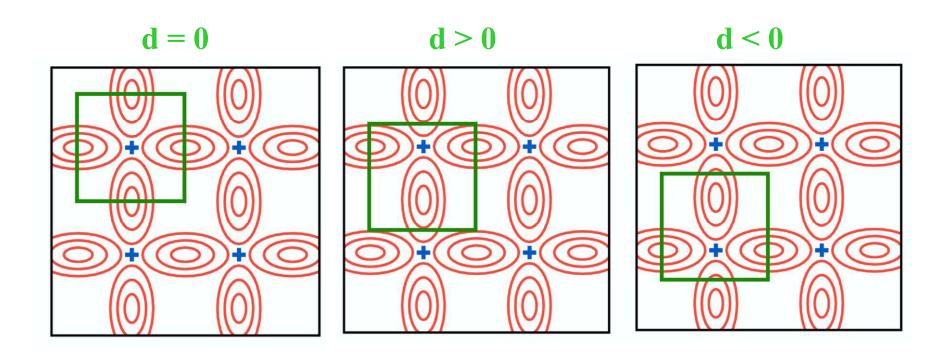


How to define the electric polarization in a solid?

Compose of molecules:
$$\vec{P} = \vec{d}_{mol} / V_{mol}$$

Electric polarization cannot uniquely be defined from the charge distribution.

For a covalent solid the problem is even more clear...



Correct way: use currents

Use the current instead of density

$$\frac{d\vec{P}_e}{dt} = \frac{1}{V_{cell}} \int dr^3 j(\vec{r})$$

R. Resta 1992: changes in the electric polarization can be unambiguously defined and calculated

$$\Delta \vec{P}_e = \int dt \, \frac{d\vec{P}}{dt}$$

How to calculate polarization changes

King-Smith and Vanderbilt, 1993:

$$\Delta \mathbf{P} = \mathbf{P}(t_2) - \mathbf{P}(t_1)$$
 where

$$\mathbf{P} = \frac{ie}{(2\pi)^3} \sum_{n} \int_{BZ} d^3k \langle u_{nk} | \nabla_{\mathbf{k}} | u_{nk} \rangle$$

where $\psi_{nk}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} u_{nk}(\mathbf{r})$

"Berry phase"

Ionic contribution

Of course, we have to add the contribution due the core of atoms or to the ions (i.e., core + core electrons):

$$\Delta \vec{P}_{tot} = \Delta \vec{P}_e + \sum_i Z^i_{val} \Delta \vec{R}_i$$

Equivalent formulation in terms of Wannier functions

$$\vec{P}_{e} = -\frac{2e}{V_{cell}} \sum\nolimits_{i=1}^{N/2} < W_{i} \mid \vec{r} \mid W_{i} >$$

The centers of the Wanniers are defined modulo R

$$\vec{r}_i \rightarrow \vec{r}_i + \vec{R}$$
 with $\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$

and, therefore, the polarization is defined modulo a "quantum" of polarization.

$$\vec{P}_e \rightarrow \vec{P}_e \pm \frac{2eR}{V_{cell}}$$

Why is interesting to calculate ΔP ?

- *You can study ferroelectricity
- *You can calculate the dynamical or effective Born charges, Z

$$Z_{j\alpha\beta}^* = rac{dP_{lpha}}{dR_{jeta}} \simeq rac{\Delta P_{lpha}}{\Delta R_{jeta}}$$

- *With Z you can calculate the IR absorption
- *With Z you can calculate the long-range part of the dynamical matrix and LO-TO splitting

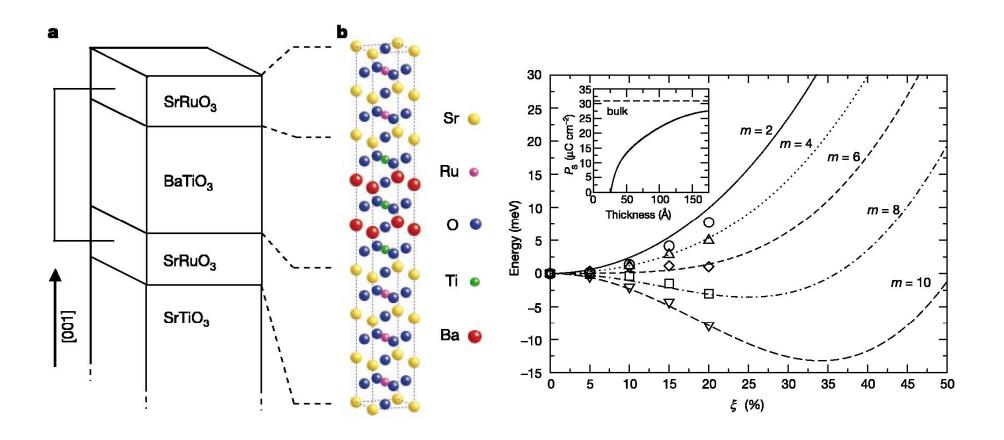
$$D_{\substack{mn \\ \mu\nu}}^{mn}(\mathbf{q}) = D_{\substack{mn \\ \mu\nu}}^{(0)}(\mathbf{q}) + \frac{4\pi e^2}{\Omega} \frac{(\mathsf{Z}_m^* \cdot \hat{\mathbf{q}})_{\mu} (\mathsf{Z}_n^* \cdot \hat{\mathbf{q}})_{\nu}}{\epsilon_{\infty}(\mathbf{q})}$$

Dynamical charges in BaTiO₃

	${ m BaTiO_3}$		
	SIESTA	PW^{23}	PW^{27}
$\mathrm{Z}_{\mathbf{A}}^{\star}$	+2.72	+2.74	+2.75
$\mathbf{Z_{A}^{\star}}$ $\mathbf{Z_{T_{i}}^{\star}}$	+7.60	+7.32	+7.16
Отт	-2.18	-2.14	-2.11
$\mathbf{Z}^{\star}_{\mathbf{O}_{\mathbf{I}}}$	-5.96	-5.78	-5.69

Critical thickness of ferroelectric thin films

J. Junquera and P. Ghosez, Nature 422, 506 (2003)



SIESTA INPUT

PolarizationGrids:

$$P_{e,\parallel} = rac{ifq_e}{8\pi^3} \int_A d\mathbf{k}_\perp \sum_{n=1}^M \int_0^{|G_\parallel|} dk_\parallel \langle u_{\mathbf{k}n} | rac{\delta}{\delta k_\parallel} | u_{\mathbf{k}n}
angle$$

%block PolarizationGrids

%endblock PolarizationGrids

SIESTA INPUT

BornCharge.true. (together with MD.TypeOfRun = FC)

The Born effective charge matrix is then written to the file SystemLabel.BC

We aware of the ambiguous definition of the polarization in the numerical calculation....

