
Siesta in parallel

Toby White
Dept. Earth Sciences, University of Cambridge

❖ How to build Siesta in parallel

❖ How to run Siesta in parallel

❖ How Siesta works in parallel

❖ How to use parallelism efficiently

❖ How to build Siesta in parallel

Siesta
SCALAPACK

BLACS

MPI

LAPACK

BLAS

LAPACK

BLAS

Linear Algebra PACKage
http://netlib.org/lapack/

Basic Linear Algebra Subroutines
http://netlib.org/blas/

Vector/matrix
manipulation

ATLAS BLAS:
http://atlas.sf.net
Free, open source (needs separate LAPACK)

GOTO BLAS:
http://www.tacc.utexas.edu/resources/software/#blas
Free, registration required, source available (needs separate LAPACK)

Intel MKL (Math Kernel Library):
Intel compiler only
Not cheap (but often installed on supercomputers)

ACML (AMD Core Math Library)
http://developer.amd.com/acml.jsp
Free, registration required. Versions for most compilers.
Sun Performance Library
http://developers.sun.com/sunstudio/perflib_index.html
Free, registration required. Only for Sun compilers (Linux/Solaris)

IBM ESSL (Engineering & Science Subroutine Library)
http://www-03.ibm.com/systems/p/software/essl.html
Free, registration required. Only for IBM compilers (Linux/AIX)

http://atlas.sf.net
http://www.tacc.utexas.edu/resources/software/#blas
http://developer.amd.com/acml.jsp
http://developers.sun.com/sunstudio/perflib_index.html

http://www-03.ibm.com/systems/p/software/essl.html

MPI

Message Passing Infrastructure
http://www.mcs.anl.gov/mpi/

Parallel
communication

http://www.mcs.anl.gov/mpi/

MPICH2:
http://www-unix.mcs.anl.gov/mpi/mpich2/

Open-MPI:
http://www.open-mpi.org

You probably don't care - your supercomputer will
have (at least one) MPI version installed.

Just in case, if you are building your own cluster:

And a lot of experimental super-fast versions ...

http://www-unix.mcs.anl.gov/mpi/mpich2/
http://www.open-mpi.org

SCALAPACK

BLACS Parallel
linear algebra

Basic Linear Algebra Communication
Subprograms
http://netlib.org/blacs/

SCAlable LAPACK
http://netlib.org/scalapack/

http://netlib.org/blacs/
http://netlib.org/scalapack/

Intel MKL (Math Kernel Library):
Intel compiler only

AMCL (AMD Core Math Library)
http://developer.amd.com/acml.jsp

S3L (Sun Scalable Scientific Program Library)
http://www.sun.com/software/products/clustertools/

IBM PESSL (Parallel Engineering & Science Subroutine Library)
http://www-03.ibm.com/systems/p/software/essl.html

http://developer.amd.com/acml.jsp
http://www.sun.com/software/products/clustertools/

http://www-03.ibm.com/systems/p/software/essl.html

Compilation instructions different for each
- not trivial ! ! ☹

Previously mentioned libraries are not the only ones
- just most common.

See Sys/ directory for examples of use.

If you are completely lost, SIESTA can guess:
./configure --enable-mpi

but not usually successfully

Do NOT mix & match compilers and libraries

Some supercomputers have multiple versions of
everything installed - several compilers, several
sets of numerical libraries.

Keep everything consistent ! !

❖ How to run Siesta in parallel

I can't tell you.

But - no change needed in input.fdf

mpirun -np 4 ./siesta < input.fdf > output.out

On command line, or in jobscript:

Sometimes mprun, sometimes omitted

Sometimes different flag ...

Sometimes need explicit full path

Sometimes standard input fails on MPI

Sometimes standard output fails on MPI

Read your supercomputer documentation!

❖ Principles of parallel programming

!
"
"

!
"
!

!
"
#

!
"
$

!"
!

!"
#

nodes

Speedup

T1

Tn

Amdahl's Law:

T = Ts + Tp

Ts ≠ 0

In the best case, for high enough n,
serial time always dominates.

Tp ≥ k/n

Latency:

Ts ≠ 0

For high enough n, communication time always dominates.

Tp = k1/n + k2nk3

!
"
"

!
"
!

!
"
#

!
"
$

!"
!

!"
#

Load balancing:

T = Tcomp + Tcomm + Tidle

(from "Designing and Building
Parallel Programs", Ian Foster)

Amdahl's Law

Total CPU time!!

Load balancing

Communications Latency

❖ How Siesta works in parallel

Diagon

ParallelOverK kPoint parallelization

matrix parallelization

OrderN spatial decomposition

kPoint parallelization

Almost perfect parallelism

(Number of kPoints) (Number of Nodes)>

small Ts

small latency

diagon matrix parallelization

SCALAPACK

ordern parallelization

The SIESTA linear scaling algorithm

Parallelization strategy

Scaling results

Summary

Real-space mesh calculations

Order-N solver

New strategy

Sparse Matrix Accounting

Data on each node:

Orbitals from atoms on this node.

Orbitals from atoms within Rc of this node.

Keep track of which nodes need which data.

Parallel Order-N SIESTA

❖ How to use parallelism efficiently

Constrained memory

Constrained time

Constrained politics

Serial?

Diag.ParallelOverK

No particular options

Orbital parallelization

Blocksize

Diag.Use2D

Diag.DivideAndConquer

Diag.AllInOne

Diag.NoExpert

Diag.Memory

Fine-tuning/debugging only:

(control load balancing/communications)

(only in case of failure)

ON.LowerMemory

OrderN parallelization

RcSpatial
(control load balancing/communications)

(does what it says!)

ProcessorY

Grid portions of code
(for all parallel options)

(control load balancing)

System orientation
(control load balancing)

DirectPhi

Memory usage
(for all parallel options)

(cache orbital values)

SaveMemory
(does what it says!)

Trade off memory usage for speed

Sunfire 15K

Opteron cluster/Myrinet

Intel cluster/Gigabyte ethernet

Choose parallelization strategy (including serial!)

Look at timings:
scaling by nodes
- for whole program
- for each routine

Play with options
 and observe
 results

