Atomic orbitals of finite range as basis sets

Javier Junquera

Most important reference followed in this lecture

phys. stat. sol. (b) 215, 809 (1999)

Subject classification: 71.15.Mb; 71.15.Fv; 71.24.+q; S1.3; S5; S5.11

Linear-Scaling ab-initio Calculations for Large and Complex Systems

E. Artacho¹) (a), D. Sánchez-Portal (b), P. Ordejón (c), A. García (d), and J. M. Soler (e)

PHYSICAL REVIEW B, VOLUME 64, 235111

Numerical atomic orbitals for linear-scaling calculations

Javier Junquera, 1 Oscar Paz, 1 Daniel Sánchez-Portal, 2,3 and Emilio Artacho4

PHYSICAL REVIEW B 66, 205101 (2002)

Systematic generation of finite-range atomic basis sets for linear-scaling calculations

Eduardo Anglada, 1,2 José M. Soler, 1 Javier Junquera, 3 and Emilio Artacho 4

...in previous chapters:

the many body problem reduced to a problem of independent particles

One particle Kohn-Sham equation

$$egin{aligned} \left[-rac{1}{2}
abla^2 + V_{eff}^{\sigma}\left(ec{r}
ight)
ight]\psi_i^{\sigma}\left(ec{r}
ight) = arepsilon_i^{\sigma}\psi_i^{\sigma}\left(ec{r}
ight) \ V_{eff}^{\sigma}\left(ec{r}
ight) = V_{ext}\left(ec{r}
ight) + V_{Hartree}[n] + V_{xc}^{\sigma}[n^{\uparrow},n^{\downarrow}] \end{aligned}$$

Goal: solve the equation, that is, find

- the eigenvectors
- the eigenvalues

Solution: expand the eigenvectors in terms of functions of known properties (basis)

$$\psi_{i}\left(ec{r}
ight)=\sum_{lpha}c_{ilpha}\left(\!f_{lpha}\left(ec{r}
ight)\!
ight)$$

basis functions

Different methods propose different basis functions

Each method has its own advantages:

- most appropriate for a range of problems
- provide insightful information in its realm of application

Each method has its own pitfalls:

- importance to understand the method, the pros and the cons.
- what can be computed and what can not be computed

Three main families of methods depending on the basis sets

Atomic sphere methods

Plane wave and grids

Localized basis sets

Three main families of methods depending on the basis sets

Atomic sphere methods

Plane wave and grids

Localized basis sets

Atomic spheres methods: most general methods for precise solutions of the KS equations

General idea: divide the electronic structure problem

unit cell

Efficient representation of atomic like features near each nucleus

Smoothly varying functions between the atoms

APW (Augmented Plane Waves; Atomic Partial Waves + Plane Waves)

KKR (Korringa, Kohn, and Rostoker method; Green's function approach)

MTO (Muffin tin orbitals)

Corresponding "L" (for linearized) methods

Atomic spheres methods: most general methods for precise solutions of the KS equations

$$\psi_{i,ec{k}}\left(ec{r}
ight) = \sum_{m} c_{i,m}(ec{k}) \chi_{ec{k}+ec{G}_{m}}^{APW}\left(ec{r}
ight)$$

$$\chi_{ec{k}+ec{G}_{m}}^{APW}\left(ec{r}
ight) = egin{cases} e^{i(ec{k}+ec{G}_{m})\cdotec{r}} & r > S, \ \sum_{L}C_{L}(ec{k}+ec{G}_{m})\psi_{L}\left(\epsilon,ec{r}
ight) & r < S \end{cases}$$

ADVANTAGES

- Most accurate methods within DFT
- Asymptotically complete
- Allow systematic convergence

DISADVANTAGES

- Very expensive
- Absolute values of the total energies are very high ⇒ if differences in relevant energies are small, the calculation must be very well converged
- Difficult to implement

Three main families of methods depending on the basis sets

Atomic sphere methods

Plane wave and grids

Localized basis sets

Plane wave methods (intertwined with pseudopotentials)

$$\psi_{i,\vec{k}}(\vec{r}) = \sum_{\vec{g}} c_{i,\vec{g}} \left[\frac{1}{\sqrt{\Omega}} e^{i(\vec{k}+\vec{g})\cdot\vec{r}} \right]$$

ADVANTAGES

- Very extended among physicists
- Conceptually simple (Fourier transforms)
- Asymptotically complete
- Allow systematic convergence
- Spatially unbiased (no dependence on the atomic positions)
- "Easy" to implement (FFT)

DISADVANTAGES

- Not suited to represent any function in particular
- Hundreths of wave functions per atom to achieve a good accuracy
- Intrinsic inadequacy for Order-N methods (extended over the whole system)

Order-N methods: The computational load scales linearly with the system size

G. Galli and M. Parrinello, Phys. Rev Lett. 69, 3547 (1992)

Locality is the key point to achieve linear scaling

Large system

x2

"Divide and Conquer"

W. Yang, Phys. Rev. Lett. 66, 1438 (1992)

Efficient basis set for linear scaling calculations: localized, few and confined

Locality ⇒ **Basis set of localized functions**

Regarding efficiency, the important aspects are:

- **NUMBER** of basis functions per atom
- RANGE of localization of these functions

Three main families of methods depending on the basis sets

Atomic sphere methods

Plane wave and grids

Localized basis sets

Basis sets for linear-scaling DFT Different proposals in the literature

Bessel functions in overlapping spheres

P. D. Haynes

http://www.tcm.phy.cam.ac.uk/~pdh1001/thesis/ and references therein

3D grid of spatially localized functions: blips

- E. Hernández et al., Phys. Rev. B 55, 13485 (1997)
- D. Bowler, M. Gillan et al., Phys. Stat. Sol. b 243, 989 (2006)

http://www.conquest.ucl.ac.uk

Real space grids + finite difference methods

Jerry Bernholc et al.

Atomic orbitals

Atomic orbitals: advantages and pitfalls

$$\phi_{Ilmn}\left(\vec{r}\right) = R_{Iln}\left(\left|\vec{r}_{I}\right|\right) Y_{lm}\left(\hat{r}_{I}\right)$$

ADVANTAGES

- Very efficient (number of basis functions needed is usually very small).
- Large reduction of CPU time and memory
- Straightforward physical interpretation (population analysis, projected density of states,...)
- They can achieve very high accuracies...

DISADVANTAGES

- ...Lack of systematic for convergence (not unique way of enlarge the basis set)
- Human and computational effort searching for a good basis set before facing a realistic project.
- Depend on the atomic position (Pulay terms).

Atomic orbitals: a radial function times an spherical harmonic

Atomic Orbitals: different representations

- Gaussian based + QC machinery

G. Scuseria (GAUSSIAN),

M. Head-Gordon (Q-CHEM)

R. Orlando, R. Dobesi (CRYSTAL)

J. Hutter (CP2K)

- Slater type orbitals

Amsterdam Density Functional

- Numerical atomic orbitals (NAO)

SIESTA

S. Kenny &. A Horsfield (PLATO)

T. Ozaki (OpenMX)

O. Sankey (FIREBALL)

Numerical atomic orbitals

Numerical solution of the Kohn-Sham Hamiltonian for the isolated pseudoatom with the same approximations (xc,pseudos) as for the condensed system

$$\left(-\frac{1}{2r}\frac{d^{2}}{dr^{2}}r+\frac{l(l+1)}{2r^{2}}+V_{l}\left(r\right)\right)R_{l}\left(r\right)=\varepsilon_{l}R_{l}\left(r\right)$$

This equation is solved in a logarithmic grid using the Numerov method

Dense close at the origin where atomic quantities oscillates wildly

Light far away from the origin where atomic quantities change smoothly

Atomic orbitals: Main features that characterize the basis

$$\phi_{Ilmn}\left(\vec{r}\right) = R_{Iln}\left(\left|\vec{r}_{I}\right|\right) Y_{lm}\left(\hat{r}_{I}\right)$$

Radial part: degree of freedom to play with

Size: Number of atomic orbitals per atom

Range: Spatial extension of the orbitals

Shape: of the radial part

Spherical harmonics: well defined (fixed) objects

Size (number of basis set per atom)

Depending on the required accuracy and available computational power

Converging the basis size: from quick and dirty to highly converged calculations

Single- ζ (minimal or SZ)

One single radial function per angular

momentum shell occupied in the free-atom

Examples of minimal basis-set:

Si atomic configuration: 1s² 2s² 2p⁶

core

valence

3s² 3p²

$$l=0$$
 (s)

$$l=1$$
 (p)

$$m = 0$$

$$m = -1$$

$$m = 0$$

$$m = +1$$

4 atomic orbitals per Si atom

(pictures courtesy of Victor Luaña)

Converging the basis size: from quick and dirty to highly converged calculations

Single- ζ (minimal or SZ)

One single radial function per angular momentum shell occupied in the free-atom

Examples of minimal basis-set:

Fe atomic configuration: 1s² 2s² 2p⁶ 3s2 3p6

4s² 3d⁶

core

valence

$$l=0$$
 (s)

m = 0

$$m - -2$$

$$m = 0$$

$$m = -2$$
 $m = -1$ $m = 0$ $m = +1$

l=2 (d)

$$m = +2$$

6 atomic orbitals per Fe atom

(pictures courtesy of Victor Luaña)

The optimal atomic orbitals are environment dependent

Basis set generated for isolated atoms...
...but used in molecules or condensed systems

Add flexibility to the basis to adjust to different configurations

Converging the basis size: from quick and dirty to highly converged calculations

Single- ζ (minimal or SZ)

One single radial function per angular momentum shell occupied in the free-atom

Improving the quality

Radial flexibilization:

Add more than one radial function within the same angular momentum than SZ

Multiple-ζ

Schemes to generate multiple- ζ basis sets Use pseudopotential eigenfunctions with increasing number of nodes

Advantages

Orthogonal

Asymptotically complete

Disadvantages

Excited states of the pseudopotentials, usually unbound

Efficient depends on localization radii

T. Ozaki *et al.*, Phys. Rev. B 69, 195113 (2004)

http://www.openmx-square.org/

Availables in Siesta:

PAO.BasisType Nodes

Schemes to generate multiple- ζ basis sets Chemical hardness: use derivatives with respect to the charge of the atoms

Advantages

Orthogonal

It does not depend on any variational parameter

Disadvantages

Range of second- ζ equals the range of the first- ζ function

G. Lippert et al., J. Phys. Chem. 100, 6231 (1996)

http://cp2k.berlios.de/

Default mechanism to generate multiple- ζ in SIESTA: "Split-valence" method

Starting from the function we want to suplement

Default mechanism to generate multiple- ζ in SIESTA: "Split-valence" method

The second- ζ function reproduces the tail of the of the first- $\overline{\zeta}$ outside a radius r_m

Default mechanism to generate multiple- ζ in SIESTA: "Split-valence" method

And continuous smoothly towards the origin as $r^l\left(a_l-b_lr^2\right)$ (two parameters: the second- ζ and its first derivative continuous at r_m

Default mechanism to generate multiple- ζ in SIESTA: "Split-valence" method

The same Hilbert space can be expanded if we use the difference, with the advantage that now the second- ζ vanishes at r_m (more efficient)

Default mechanism to generate multiple- ζ in SIESTA: "Split-valence" method

Finally, the second- ζ is normalized r_m controlled with PAO.SplitNorm (typical value 0.15)

Both split valence and chemical hardness methods provides similar shapes for the second-ζ function

Split valence double- ζ has been orthonormalized to first- ζ orbital

SV: higher efficiency (radius of second-ζ can be restricted to the inner matching radius)

E. Anglada, J. Junquera, J. M. Soler, E. Artacho, Phys. Rev. B 66, 205101 (2002)

Converging the basis size: from quick and dirty to highly converged calculations

Single- ζ (minimal or SZ)

One single radial function per angular

momentum shell occupied in the free-atom

Improving the quality

Radial flexibilization:

Add more than one radial function within the same angular momentum than SZ

Multiple-ζ

Angular flexibilization:

Add shells of different atomic symmetry (different I)

Polarization

Example of adding angular flexibility to an atom Polarizing the Si basis set

Si atomic configuration: 1s² 2s² 2p⁶

core

$$l = 0 (s)$$

$$m = 0$$

$$l=1$$
 (p)

$$m = -1$$

$$m = 0$$

$$m = +1$$

Polarize: add l = 2 (d) shell

$$m = -2$$

$$m = -1$$
 $m = 0$

$$m = 0$$

$$m = +1$$

$$m = +2$$

New orbitals directed in different directions with respect the original basis

Two different ways of generate polarization orbitals

Perturbative polarization

Apply a small electric field to the orbital we want to polarize

Si 3d orbitals

E. Artacho et al., Phys. Stat. Sol. (b), 215, 809 (1999)

Two different ways of generate polarization orbitals

Perturbative polarization

Apply a small electric field to the orbital we want to polarize

Atomic polarization

Solve Schrödinger equation for higher angular momentum

unbound in the free atom ⇒ require short cut offs

Si 3d orbitals

E. Artacho et al., Phys. Stat. Sol. (b), 215, 809 (1999)

Improving the quality of the basis ⇒ more atomic orbitals per atom

Atom	Valence	SZ			DZ	P		
	configuration							
		# orbita	ls symmetry	# orbita	ls symmetry	# orbitals	symmetry	
Si	$3s^2 \ 3p^2$	1	s	2	s	1	d_{xy}	
		1	p_x	2	p_x	1	d_{yz}	
		1	p_y	2	p_y	1	d_{zx}	
		1	p_z	2	p_z	1	$egin{array}{c} d_{zx} \ d_{x^2-y^2} \ d_{3z^2-r^2} \end{array}$	
						1	$d_{3z^2-r^2}$	
	Total	4		8		(DZ+P) 13		

Atom	Valence						
	configuration						
		# orbital	s symmetry	# orbitals	symmetry	# orbitals	symmetry
Fe	$4s^2 \ 3d^6$	1	s	2	s	1	p_x
		1	d_{xy}	2	d_{xy}	1	p_y
		1	d_{yz}	2	$egin{aligned} d_{xy} \ d_{yz} \end{aligned}$	1	p_z
		1	d_{zx}	2	d_{zx}		
		1	$d_{x^2-y^2} \ d_{3z^2-r^2}$	2	$egin{array}{c} d_{zx} \ d_{x^2-y^2} \ d_{3z^2-r^2} \end{array}$		
		1	$d_{3z^2-r^2}$	2	$d_{3z^2-r^2}$		
	Total	6		12		(DZ+P) 15	

Convergence as a function of the size of the basis set: Bulk Si

Cohesion curves

PW and NAO convergence

Atomic orbitals show nice convergence with respect the size

Polarization orbitals very important for convergence (more than multiple- ζ)

Double-ζ plus polarization equivalent to a PW basis set of 26 Ry

Convergence as a function of the size of the basis set: **Bulk Si**

	SZ	DZ	TZ	SZP	DZP	TZP	TZDP	PW	APW	Exp
a (Å)	5.52	5.46	5.45	5.42	5.39	5.39	5.39	5.38	5.41	5.43
B (GPa)	89	96	98	98	97	97	96	96	96	98.8
E _c (eV)	4.72	4.84	4.91	5.23	5.33	5.34	5.34	5.37	5.28	4.63

A DZP basis set introduces the same deviations as the ones due to the DFT or the pseudopotential approaches

 $SZ = single-\zeta$

P=Polarized

PW: Converged Plane Waves (50 Ry)

DZ= doble- ζ

DP=Doblepolarized

APW: Augmented Plane Waves

TZ=triple- ζ

Range: the spatial extension of the atomic orbitals

Order(N) methods ⇒ locality, that is, a finite range for matrix and overlap matrices

Neglect interactions:

Below a tolerance

Beyond a given scope of neighbours

Problem: introduce numerical instabilities for high tolerances.

Strictly localized atomic orbitals:

Vanishes beyond a given cutoff radius

O. Sankey and D. Niklewski, PRB 40, 3979 (89)

Problem: accuracy and computational efficiency depend on the range of the basis orbitals

How to define all the r_c in a balance way?

How to control de range of the orbitals in a balanced way: the energy shift

Particle in a confinement potential:

Imposing a finite
$$\int_{-\infty}^{+\infty} |\phi(x)|^2 dx$$

Continuous function and first derivative

E is quantized (not all values allowed)

Increasing $E \Rightarrow \phi_{\mu}$ has a node and tends to $-\infty$ when $x \rightarrow -\infty$

Complement M III "Quantum Mechanics", C. Cohen-Tannoudji *et al.*

How to control de range of the orbitals in a balanced way: the energy shift

$$\left(-\frac{1}{2r}\frac{d^{2}}{dr^{2}}r + \frac{l(l+1)}{2r^{2}} + V_{l}(r)\right)R_{l}(r) = \left(\varepsilon_{l} + \delta\varepsilon_{l}\right)R_{l}(r)$$

Energy increase = Energy shift PAO.EnergyShift (energy)

Cutoff radius, r_c , = position where each orbital has the node A single parameter for all cutoff radii

The larger the Energy shift, the shorter the r_cs

Typical values: 100-200 meV

E. Artacho et al. Phys. Stat. Solidi (b) 215, 809 (1999)

Convergence with the range

Bulk Si

equal *s*, *p* orbitals radii

J. Soler et al., J. Phys: Condens. Matter, 14, 2745 (2002)

More efficient

More accurate

The range and shape might be also controlled by an extra charge and/or by a confinement potential

Extra charge δQ

Orbitals in anions tend to be more delocalized

Orbitals in cations tend to be more localized

This parameter might be important in some oxides

Confinement potentials

Solve the Schrödinger equation for the isolated atom inside an confinement potential

Different proposals for the confinement potentials:

Hard confinement

Fireball

O. F. Sankey and D. J. Niklewski, Phys. Rev. B 40, 3979 (89)

The default in SIESTA

$$V = \infty, r \ge a$$

Determined by the energy shift

$$V = 0, r < a$$

Advantages: empirically, it works very nice

Pitfall: produces orbitals with first derivative discontinuous at r_c problem when combined with numerical grids.

Different proposals for the confinement potentials: Polynomials

$$V\left(r\right) = V_0 r^n$$

n = 2 [D. Porezag *et al*, PRB 51, 12947 (1995)] n = 6 [A. P. Horsfield, PRB 56, 6594 (1997))

Advantages: orbital continuous with all the derivatives continuos

Pitfall: no radius where the orbitals is strictly zero not zero in the core regions

Different proposals for the confinement potentials: Direct modification of the wave function

$$\phi_{conf}(r) = \left(1 - e^{-\alpha(r - r_c)^2}\right) \psi_{atom}(r)$$

- S. D. Kenny et al., Phys. Rev. B 62, 4899 (2000)
- C. Elsaesser et al. J. Phys. Condens. Matter 2, 4371 (1990)

Advantages: strict localization beyond r_c

Pitfall: bump when α is large and r_c is small

Different proposals for the confinement potentials:

Shoft-confinement potential

Available in SIESTA

$$V\left(r\right) = V_0 \frac{e^{-\frac{r_c - r_i}{r - r_i}}}{r_c - r}$$

J. Junquera et al., Phys. Rev. B 64, 235111 (2001)

Advantages: orbital continuous with all the derivatives continuos

diverges at r_c (orbital exactly vanishes there)

zero at the core region

Pitfall: two new parameters to play with, more exploratory calculations

Optimization of the parameters that define the basis set: the Simplex code

$$E_{Tot} = E_{Tot} \quad \{\delta Q, r_c, ...\}$$

Isolated atom Kohn-Sham Hamiltonian

Pseudopotential
Extra charge
Confinement potential

SIMPLEX
MINIMIZATION
ALGORITHM

Full DFT calculation
of the system for which
the basis is to be
optimized
(solid, molecule,...)

Basis set

Publicly available soon...

How to introduce the basis set in SIESTA Effort on defining a systematics with minimum parameters

If nothing is specified: default

Basis size: PAO.BasisSize DZP

Range of first-zeta: PAO.EnergyShift 0.02 Ry

Second-zeta: PAO.BasisType Split

Range of second-zeta: PAO.SplitNorm 0.15

Confinement: Hard well

Good basis set in terms of accuracy versus efficiency

More global control on the basis with a few input variables: size and range

Size:

Basis size:

PAO.BasisSize SZ

DZ

SZP

DZP

Range:

Range of first-zeta: PAO.EnergyShift 0.02 Ry

Range of second-zeta: PAO.SplitNorm 0.15

The larger both values, the more confined the basis functions

```
%block PAO.Basis  # Define Basis set

H    1 +0.25  # Species label, number of 1-shells, charge
n=1 0 2  # n, l, Nzeta
5.000    3.000  # rc (first-zeta), rm (second-zeta)
1.000    1.000  # scaling factors
%endblock PAO.Basis
```

Some variable might be computed automatically

These variables calculated from PAO.EnergyShift and PAO.SplitNorm values

Adding polarization orbitals: perturbative polarization

Adding polarization orbitals: atomic polarization

```
%block PAO.Basis
                            # Define Basis set
          +0.25
                            # Species label, number of 1-shells, charge
n=1 0 2
                            # n, l, Nzeta
             3.000
                            # rc (first-zeta), rm (second-zeta)
  5.000
                            # scaling factors
   1.000
             1.000
n=2 1 1
                            # n, l, Nzeta
                            # rc (first-zeta)
  5.000
   1.000
                            # scaling factors
%endblock PAO.Basis
```

Soft-confinement potential

```
%block PAO.Basis  # Define Basis set

H    1 +0.25  # Species label, number of 1-shells, charge
n=1    0    2 E 150.00 4.5  # n, l, Nzeta, flag soft-conf, prefactor, inner rad
    5.000    3.000  # rc (first-zeta), rm (second-zeta)
    1.000    1.000  # scaling factors
%endblock PAO.Basis
```

$$V\left(r\right) = V_0 \frac{e^{-\frac{r_c - r_i}{r - r_i}}}{r_c - r}$$

 V_0 in Ry

 r_i in bohrs

Recap

Numerical Atomic Orbitals

A very efficient basis set

Spetially suitable for Order-N methods

Smooth transition from quick exploratory calculations to highly converged

Lack of systematic convergence

Current effort for searching the lost systematics. Efficients methods for:

Generate multiple-ζ: Split Valence

Generate polarization orbitals: Perturbative polarization

Control the range of the orbitals in abalanced way: Energy Shift

Confine the orbitals: Soft-confinement potential

A DZP basis set, the same deviations as DFT functional or Pseudo

Suplementary information

Spherical Bessel functions $j_l(kr)$, solutions of a free particle confined in a box

$$V = \infty, r \ge a$$

Schrödinger equation for a particle inside the box

$$-\frac{\hbar^{2}}{2m}\nabla^{2}\psi\left(r,\theta,\phi\right) = E\psi\left(r,\theta,\phi\right)$$

After separation of variables, the radial equation reads

$$\psi(r, \theta, \phi) = R(R)\Theta(\theta)\Phi(\phi)$$

$$\frac{d^2R}{dr^2} + \frac{2}{r}\frac{dR}{dr} + \left[k^2 - \frac{l(l+1)}{r^2}\right]R = 0$$

$$k^2 = \frac{2mE}{\hbar^2} \qquad \begin{array}{c} l \in \mathbf{Z}, \text{ separation} \\ \text{variable constant} \end{array}$$

Solution of the radial equation

$$R(r) = \begin{cases} Aj_l(kr) + Bn_l(kr), & r < a \\ 0, & r \ge a \end{cases}$$

Boundary conditions: k must satisfy $j_l(ka) = 0$

Spherical von Neumann function, not finite at the origin