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as basis sets



Most important reference followed in this lecture



…in previous chapters:

the many body problem reduced to a problem of 
independent particles

Goal: solve the equation, that is, find

- the eigenvectors

- the eigenvalues

One particle Kohn-Sham equation

Solution: expand the eigenvectors in terms of functions of known 
properties (basis)

basis functions



Different methods propose 
different basis functions

Each method has its own advantages:
- most appropriate for a range of problems

- provide insightful information in its realm of application

Each method has its own pitfalls:
- importance to understand the method, the pros and the cons. 

- what can be computed and what can not be computed 
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unit cell

Atomic spheres methods: most general methods for 
precise solutions of the KS equations

General idea: divide the electronic structure problem

APW (Augmented Plane Waves; Atomic Partial Waves + Plane Waves)

KKR (Korringa, Kohn, and Rostoker method; Green’s function approach)

MTO (Muffin tin orbitals)

Corresponding “L” (for linearized) methods

Smoothly varying functions 
between the atoms

Efficient representation of            
atomic like features near each nucleus

S



ADVANTAGES
• Most accurate methods within DFT

• Asymptotically complete

• Allow systematic convergence

DISADVANTAGES
• Very expensive

• Absolute values of the total energies are 
very high ⇒⇒⇒⇒ if differences in relevant 
energies are small, the calculation must be 
very well converged

• Difficult to implement

Atomic spheres methods: most general methods for 
precise solutions of the KS equations
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Plane wave methods       
(intertwined with pseudopotentials)

M. Payne et al., Rev. Mod. Phys. 64, 1045 (1992)

ADVANTAGES
• Very extended among physicists

• Conceptually simple (Fourier transforms)

• Asymptotically complete

• Allow systematic convergence

• Spatially unbiased (no dependence on the 
atomic positions)

• “Easy” to implement (FFT)

DISADVANTAGES
• Not suited to represent any function in 
particular

• Hundreths of wave functions per atom to 
achieve a good accuracy

• Intrinsic inadequacy for Order-N methods 
(extended over the whole system)



Order-N methods: The computational load
scales linearly with the system size

N  (# atoms)

CPU 
load

~ 100

Early

90’s

~ N

~ N3

G. Galli and M. Parrinello, Phys. Rev Lett. 69, 3547 (1992)



Locality is the key point
to achieve linear scaling

W. Yang, Phys. Rev. Lett. 66, 1438 (1992)

"Divide and Conquer"

x2

Large system



Locality ⇒⇒⇒⇒ Basis set of localized functions

Efficient basis set for linear scaling
calculations: localized, few and confined

Regarding efficiency, the important aspects are:
- NUMBER of basis functions per atom
- RANGE of localization of these functions

N  (# atoms)

CPU 
load

~ 100

Early

90’s

~ N

~ N3



Three main families of methods 
depending on the basis sets

Atomic sphere methods

Localized basis sets

Plane wave and grids



Bessel functions in overlapping spheres

P. D. Haynes 

http://www.tcm.phy.cam.ac.uk/~pdh1001/thesis/
and references therein

3D grid of spatially localized functions: blips

E. Hernández et al., Phys. Rev. B 55, 13485 (1997)

D. Bowler, M. Gillan et al., Phys. Stat. Sol. b 243, 989 (2006)

http://www.conquest.ucl.ac.uk

Basis sets for linear-scaling DFT
Different proposals in the literature

Atomic orbitals

Real space grids + finite difference methods
Jerry Bernholc et al.



ADVANTAGES
• Very efficient (number of basis functions 
needed is usually very small).

• Large reduction of CPU time and memory

• Straightforward physical interpretation 
(population analysis, projected density of 
states,…)

• They can achieve very high accuracies…

Atomic orbitals: 
advantages and pitfalls

DISADVANTAGES
• …Lack of systematic for convergence     
(not unique way of enlarge the basis set)

• Human and computational effort 
searching for a good basis set before 
facing a realistic project.

• Depend on the atomic position (Pulay
terms). 



Atomic orbitals:
a radial function times an spherical harmonic

z

y

x

Index of an atom

Angular momentum

Possibility of multiple 
orbitals with the same l,m



Atomic Orbitals: different representations

- Gaussian based + QC machinery

G. Scuseria (GAUSSIAN),

M. Head-Gordon (Q-CHEM)          
R. Orlando, R. Dobesi (CRYSTAL)
J. Hutter (CP2K)

- Slater type orbitals
Amsterdam Density Functional

- Numerical atomic orbitals (NAO)

SIESTA

S. Kenny &. A Horsfield (PLATO)
T. Ozaki (OpenMX)
O. Sankey (FIREBALL)



Numerical atomic orbitals

Numerical solution of the Kohn-Sham Hamiltonian for the
isolated pseudoatom with the same approximations

(xc,pseudos) as for the condensed system

This equation is solved in a logarithmic grid using the Numerov method

Dense close at the origin where 
atomic quantities oscillates wildly

Light far away from the origin where 
atomic quantities change smoothly



Atomic orbitals: 
Main features that characterize the basis

s

p

d

f

Spherical harmonics:     
well defined (fixed) objects

Size: Number of atomic orbitals per atom

Range: Spatial extension of the orbitals

Shape: of the radial part

Radial part:                          
degree of freedom to play with



Size (number of basis set per atom)

Quick exploratory
calculations

Highly converged
calculations

Multiple-ζ

+

Polarization

+

Diffuse orbitals

Minimal basis set

(single-ζ; SZ)

Depending on the required accuracy and

available computational power



Converging the basis size:
from quick and dirty to highly converged calculations

Single-ζζζζ (minimal or SZ)

One single radial function per angular

momentum shell occupied in the free–atom

Si atomic configuration: 1s2 2s2 2p6 3s2 3p2

core valence

Examples of minimal basis-set:

l = 0 (s)

m = 0

l = 1 (p)

m = -1 m = 0 m = +1

4 atomic orbitals per Si atom

(pictures courtesy of Victor Luaña)



Converging the basis size:
from quick and dirty to highly converged calculations

Fe atomic configuration: 1s2 2s2 2p6 3s2 3p6 4s2 3d6

core valence

Examples of minimal basis-set:

Single-ζζζζ (minimal or SZ)

One single radial function per angular

momentum shell occupied in the free–atom

l = 0 (s)

m = 0

l = 2 (d)

m = -1 m = 0 m = +1

6 atomic orbitals per Fe atom

(pictures courtesy of Victor Luaña)

m = -2 m = +2



The optimal atomic orbitals are 
environment dependent

R  → → → → 0 (He atom) R  → → → → ∞∞∞∞ (H atom)

rR

H H

Basis set generated for isolated atoms…
…but used in molecules or condensed systems

Add flexibility to the basis to adjust to different configurations



Converging the basis size:
from quick and dirty to highly converged calculations

Single-ζζζζ (minimal or SZ)

One single radial function per angular

momentum shell occupied in the free–atom

Improving the quality

Radial flexibilization: 

Add more than one radial function
within the same angular 

momentum than SZ

Multiple-ζζζζ



Schemes to generate multiple-ζζζζ basis sets
Use pseudopotential eigenfunctions with increasing
number of nodes

T. Ozaki et al., Phys. Rev. B 69, 195113 (2004)

http://www.openmx-square.org/

Advantages

Orthogonal

Asymptotically complete

Disadvantages

Excited states of the 
pseudopotentials, usually unbound

Efficient depends on localization 
radii

Availables in Siesta:

PAO.BasisType Nodes



Schemes to generate multiple-ζζζζ basis sets
Chemical hardness: use derivatives with respect to the
charge of the atoms

G. Lippert et al., J. Phys. Chem. 100, 6231 (1996)

http://cp2k.berlios.de/

Advantages

Orthogonal

It does not depend on any 
variational parameter

Disadvantages

Range of second-ζζζζ equals the 
range of the first-ζζζζ function



Default mechanism to generate multiple- ζ ζ ζ ζ in SIESTA: 
“Split-valence” method

Starting from the function we want to suplement



Default mechanism to generate multiple- ζ ζ ζ ζ in SIESTA: 
“Split-valence” method

The second-ζζζζ function reproduces the tail of the of the first-ζζζζ outside a radius rm



Default mechanism to generate multiple- ζ ζ ζ ζ in SIESTA: 
“Split-valence” method

And continuous smoothly towards the origin as 

(two parameters: the second-ζζζζ and its first derivative continuous at rm



Default mechanism to generate multiple- ζ ζ ζ ζ in SIESTA: 
“Split-valence” method

The same Hilbert space can be expanded if we use the difference, with the 
advantage that now the second-ζζζζ vanishes at rm (more efficient)



Default mechanism to generate multiple- ζ ζ ζ ζ in SIESTA: 
“Split-valence” method

Finally, the second-ζζζζ is normalized

rm controlled with PAO.SplitNorm (typical value 0.15)



Both split valence and chemical hardness methods 
provides similar shapes for the second-ζζζζ function

E. Anglada, J. Junquera, J. M. Soler, E. Artacho,

Phys. Rev. B 66, 205101 (2002)

Split valence double-ζζζζ has 
been orthonormalized to 
first-ζζζζ orbital

SV: higher efficiency
(radius of second-ζζζζ can be
restricted to the inner
matching radius)Gaussians

Chemical hardeness

Split valence



Converging the basis size:
from quick and dirty to highly converged calculations

Single-ζζζζ (minimal or SZ)

One single radial function per angular

momentum shell occupied in the free–atom

Improving the quality

Radial flexibilization: 

Add more than one radial function
within the same angular 

momentum than SZ

Multiple-ζζζζ

Angular flexibilization:

Add shells of different atomic
symmetry (different l)

Polarization



Example of adding angular flexibility to an atom
Polarizing the Si basis set

Si atomic configuration: 1s2 2s2 2p6 3s2 3p2

core valence
l = 0 (s)

m = 0

l = 1 (p)

m = -1 m = 0 m = +1

Polarize: add l = 2 (d) shell

m = -1 m = 0 m = +1m = -2 m = +2
New orbitals directed in 
different directions with 
respect the original basis



Two different ways of generate
polarization orbitals

E. Artacho et al., Phys. Stat. Sol. (b), 215, 809 (1999) 

Perturbative polarization

Apply a small electric field to the
orbital we want to polarize

EEEE

s s+p

Si 3d 

orbitals



Two different ways of generate
polarization orbitals

E. Artacho et al., Phys. Stat. Sol. (b), 215, 809 (1999) 

Perturbative polarization

Apply a small electric field to the
orbital we want to polarize

EEEE

s s+p

Si 3d 

orbitals

Atomic polarization

Solve Schrödinger equation for    
higher angular momentum

unbound in the free atom ⇒⇒⇒⇒

require short cut offs



Improving the quality of the basis ⇒⇒⇒⇒
more atomic orbitals per atom



Convergence as a function of the size of the basis set: 
Bulk Si

Cohesion curves PW and NAO convergence

Atomic orbitals show nice convergence with respect the size 

Polarization orbitals very important for convergence (more than multiple-ζζζζ)

Double-ζζζζ plus polarization equivalent to a PW basis set of 26 Ry



4.635.285.375.345.345.335.234.914.844.72Ec

(eV)

98.8969696979798989689B
(GPa)

5.435.415.385.395.395.395.425.455.465.52a
(Å)

ExpAPWPWTZDPTZPDZPSZPTZDZSZ

SZ = single-ζζζζ

DZ= doble- ζζζζ

TZ=triple- ζζζζ

P=Polarized

DP=Doble-
polarized

PW: Converged Plane Waves (50 Ry)

APW: Augmented Plane Waves

Convergence as a function of the size of the basis set: 
Bulk Si

A DZP basis set introduces the same deviations as the 
ones due to the DFT or the pseudopotential approaches



Range: the spatial extension 
of the atomic orbitals
Order(N) methods ⇒⇒⇒⇒ locality, that is, a finite range for matrix and overlap matrices 

Neglect interactions:

Below a tolerance

Beyond a given scope of neighbours

Problem: introduce numerical instabilities 
for high tolerances.

Strictly localized atomic orbitals:

Vanishes beyond a given cutoff radius

O. Sankey and D.  Niklewski, PRB 40, 3979 (89)

Problem: accuracy and computational 
efficiency depend on the range of the basis 
orbitals

How to define all the rc in a balance way?

If the two orbitals are sufficiently far away

= 0

= 0



How to control de range of the orbitals in a balanced way: 
the energy shift

Complement M III “Quantum Mechanics”, 

C. Cohen-Tannoudji et al.

Increasing E⇒⇒⇒⇒ has a node
and tends to -∞∞∞∞ when x→→→→ - ∞∞∞∞

Particle in a confinement potential:
Imposing  a finite                                   

+

Continuous function and first derivative 

⇓⇓⇓⇓

E is quantized (not all values allowed)



Cutoff radius, rc, = position where each orbital has the node

A single parameter for all cutoff radii

The larger the Energy shift, the shorter the rcs

Typical values: 100-200 meV

E. Artacho et al. Phys. Stat. Solidi (b) 215, 809 (1999)

How to control de range of the orbitals in a balanced way: 
the energy shift

Energy increase ≡≡≡≡ Energy shift 

PAO.EnergyShift (energy)



Convergence with the range

J. Soler et al., J. Phys: Condens. Matter, 14, 2745 (2002) 

Bulk Si

equal s, p
orbitals radii

More efficient

More accurate



The range and shape might be also controlled by an 
extra charge and/or by a confinement potential

Extra charge  δ δ δ δQ

Orbitals in anions tend to be more delocalized 

Orbitals in cations tend to be more localized

This parameter might be important in some oxides

Confinement potentials

Solve the Schrödinger equation for the isolated atom inside 
an confinement potential



Different proposals for the confinement potentials: 
Hard confinement 

Fireball
O. F. Sankey and D. J.  Niklewski, Phys. Rev. B 40, 3979 (89)

The default in SIESTA

a

Determined by the energy shift

Pitfall: produces orbitals with first derivative discontinuous at rc

problem when combined with numerical grids.

Advantages: empirically, it works very nice



Different proposals for the confinement potentials: 
Polynomials

Pitfall: no radius where the orbitals is strictly zero

not zero in the core regions

Advantages: orbital continuous with all the derivatives continuos

n = 2   [D. Porezag et al, PRB 51, 12947 (1995) ]

n = 6  [ A. P. Horsfield, PRB 56, 6594 (1997) )



Different proposals for the confinement potentials: 
Direct modification of the wave function

Pitfall: bump when  α α α α is large and rc is small

Advantages: strict localization beyond rc

S. D. Kenny et al., Phys. Rev. B 62, 4899 (2000)

C. Elsaesser et al. J. Phys. Condens. Matter 2, 4371 (1990)



Different proposals for the confinement potentials: 
Shoft-confinement potential

Pitfall: two new parameters to play with, more exploratory calculations

Advantages: orbital continuous with all the derivatives continuos

diverges at rc (orbital exactly vanishes there)

zero at the core region

Available in SIESTA

J. Junquera et al., Phys. Rev. B 64, 235111 (2001)



Optimization of the parameters that define the basis set: 
the Simplex code

Set of parameters

{ },..., crQδ

Isolated atom
Kohn-Sham Hamiltonian

+
Pseudopotential

Extra charge
Confinement potential

Full DFT calculation
of the system for which

the basis is to be 
optimized

(solid, molecule,...)

Basis set

SIMPLEX

MINIMIZATION

ALGORITHM

ETot= ETot { },..., crQδ

Publicly available soon…



How to introduce the basis set in SIESTA                        
Effort on defining a systematics with minimum  parameters

If nothing is specified: default

Basis size: PAO.BasisSize DZP

Range of first-zeta: PAO.EnergyShift 0.02 Ry

Second-zeta: PAO.BasisType Split 

Range of second-zeta: PAO.SplitNorm 0.15

Confinement: Hard well

Good basis set in terms of accuracy versus efficiency



More global control on the basis with a few input variables: 
size and range

Size:

Range of first-zeta: PAO.EnergyShift 0.02 Ry

Range of second-zeta: PAO.SplitNorm 0.15

The larger both values, the more confined the basis functions

Range: 

Basis size:

PAO.BasisSize SZ

DZ

SZP

DZP



More specific control on the basis:  
the PAO.Basis block



More specific control on the basis:  
the PAO.Basis block

These variables calculated from 

PAO.EnergyShift and PAO.SplitNorm values

Some variable might be computed automatically



More specific control on the basis:  
the PAO.Basis block

Adding polarization orbitals: perturbative polarization



More specific control on the basis:  
the PAO.Basis block

Adding polarization orbitals: atomic polarization



More specific control on the basis:  
the PAO.Basis block

Soft-confinement potential

V0 in Ry

ri in bohrs



Recap

Numerical Atomic Orbitals

A very efficient basis set

Spetially suitable for Order-N methods

Smooth transition from quick exploratory calculations to 
highly converged

Lack of systematic convergence

Current effort for searching the lost systematics. Efficients
methods for:

Generate multiple-ζζζζ: Split Valence

Generate polarization orbitals: Perturbative polarization 

Control the range of the orbitals in abalanced way: Energy Shift

Confine the orbitals: Soft-confinement potential

A DZP basis set, the same deviations as DFT functional or Pseudo



Suplementary information



Spherical Bessel functions jl(kr),
solutions of a free particle confined in a box

a

Schrödinger equation for a particle inside the box

After separation of variables, the radial equation reads

l ∈∈∈∈ Z, separation 
variable constant

Spherical von Neumann 
function, not finite at the origin

k must satisfyBoundary conditions:

Solution of the radial equation


